scholarly journals The ideas of A.M. Baldin on overcoming the reductionism principle in relativistic physics

2019 ◽  
Vol 204 ◽  
pp. 01001
Author(s):  
Anton A. Baldin

The reductionism principle and the role of the Standard Model in the general paradigm of modern physics are discussed. The structure of the laws of nature is considered based on the idea of symmetry. The criteria of applicability of variables used for description of relativistic nuclear collisions and the ideas of A. M. Baldin on the notion “elementary particle” are discussed. Particle production is considered using the main parameter of the Lobachevsky geometry, the angle of parallelism.

2020 ◽  
Vol 29 (11) ◽  
pp. 2041012
Author(s):  
Pedro D. Alvarez ◽  
Mauricio Valenzuela ◽  
Jorge Zanelli

General Relativity (GR) and the Standard Model (SM) of particle physics are two enormously successful frameworks for our understanding the fundamental laws of nature. However, these theoretical schemes are widely disconnected, logically independent and unrelated in scope. Yet, GR and SM at some point must intersect, producing claims about phenomena that should be reconciled. Be it as it may, both schemes share a common basic ground: symmetry under local Lorentz transformations. Here, we will focus on the consequences of assuming this feature from the beginning to combine geometry, matter fields and gauge interactions. We give a rough description of how this could be instrumental for the construction of a unified scheme of gravitation and particle physics.


2020 ◽  
Vol 57 (3) ◽  
pp. 160-175
Author(s):  
Vladimir P. Vizgin ◽  

The article соnsiders the socio-cultural aspects of the standard model (SM) in elementary particle physics and history of its creation. SM is a quantum field gauge theory of electromagnetic, weak and strong interactions, which is the basis of the modern theory of elementary particles. The process of its elaboration covers a twenty-year period: from 1954 (the concept of gauge fields by C. Yang and R. Mills) to the early 1970s., when the construction of renormalized quantum chromodynamics and electroweak theory wеre completed. The socio-cultural aspects of SM are explored on the basis of a quasi-empirical approach, by studying the texts of its creators and participants in the relevant events. We note also the important role of such an “external” factor as large-scale state projects on the creation of nuclear and thermonuclear weapons, which provided personnel and financial support for fundamental research in the field of nuclear physics and elementary particle physics (the implementation of thermonuclear projects took place just in the 1950s, and most of the theorists associated with the creation of SM were simultaneously the main developers of thermonuclear weapons, especially in the USSR). The formation of SM is considered as a competition between two research programs (paradigms) – gauge-field and phenomenological, associated with the rejection of the field concept. The split of the scientific community of physicists associated with this competition is going on during this period. It’s accompanied by a kind of “negotiations”, which in the early 1970s lead to the triumph of the gauge field program and the restoration of the unity of the scientific community. The norms and rules of the scientific ethos played the regulatory role in this process. The scientific-realistic position of the metaphysical attitudes of the majority of theorists and their negative attitude to the concepts of philosophical relativism and social construction of scientific knowledge are emphasized. Some features of the history of SM creation are also noted, such as the positive role of aesthetic judgments; “scientific-school” form of research (in the USSR), its pros and cons; a connection to historical-scientific “drama of ideas” with “dramas of people” who made a wrong choice and (or) “missed their opportunities”.


2021 ◽  
Vol 103 (7) ◽  
Author(s):  
Pietro Colangelo ◽  
Fulvia De Fazio ◽  
Francesco Loparco

2003 ◽  
Vol 14 (09) ◽  
pp. 1273-1278 ◽  
Author(s):  
MICHAEL KLASEN

The Feynman diagram generator FeynArts and the computer algebra program FormCalc allow for an automatic computation of 2→2 and 2→3 scattering processes in High Energy Physics. We have extended this package by four new kinematical routines and adapted one existing routine in order to accomodate also two- and three-body decays of massive particles. This makes it possible to compute automatically two- and three-body particle decay widths and decay energy distributions as well as resonant particle production within the Standard Model and the Minimal Supersymmetric Standard Model at the tree- and loop-level. The use of the program is illustrated with three standard examples: [Formula: see text], [Formula: see text], and [Formula: see text].


2015 ◽  
Vol 72 (11) ◽  
pp. 4297-4318 ◽  
Author(s):  
Todd P. Lane ◽  
Mitchell W. Moncrieff

Abstract Dynamical models of organized mesoscale convective systems have identified the important features that help maintain their overarching structure and longevity. The standard model is the trailing stratiform archetype, featuring a front-to-rear ascending circulation, a mesoscale downdraft circulation, and a cold pool/density current that affects the propagation speed and the maintenance of the system. However, this model does not represent all types of mesoscale convective systems, especially in moist environments where the evaporation-driven cold pools are weak and the convective inhibition is small. Moreover, questions remain about the role of gravity waves in creating and maintaining organized systems and affecting their propagation speed. This study presents simulations and dynamical models of self-organizing convection in a moist, low–convective inhibition environment and examines the long-lived convective regimes that emerge spontaneously. This paper, which is Part I of this study, specifically examines the structure, kinematics, and maintenance of long-lived, upshear-propagating convective systems that differ in important respects from the standard model of long-lived convective systems. Linear theory demonstrates the role of ducted gravity waves in maintaining the long-lived, upshear-propagating systems. A steady nonlinear model approximates the dynamics of upshear-propagating density currents that are key to the maintenance of the mesoscale convective system.


Sign in / Sign up

Export Citation Format

Share Document