scholarly journals Towards understanding triiodide photochemistry in the solid state by femtosecond electron diffraction

2019 ◽  
Vol 205 ◽  
pp. 09007
Author(s):  
Rui Xian ◽  
Stuart A. Hayes ◽  
Gaston Corthey ◽  
Carole A. Morrison ◽  
Alexander Marx ◽  
...  

The photochemistry of the triiodide anion has been investigated by femtosecond electron diffraction. The time-resolved signal indicates the presence of reaction products and large-amplitude coherent motion produced by participating species. To reconstruct the atomic detail of the reaction and identify the major contributors to the detected signal, we outline the approach for atomic-level reconstruction.

Science ◽  
2003 ◽  
Vol 302 (5649) ◽  
pp. 1382-1385 ◽  
Author(s):  
Bradley J. Siwick ◽  
Jason R. Dwyer ◽  
Robert E. Jordan ◽  
R. J. Dwayne Miller

Author(s):  
Jason R Dwyer ◽  
Christoph T Hebeisen ◽  
Ralph Ernstorfer ◽  
Maher Harb ◽  
Vatche B Deyirmenjian ◽  
...  

Femtosecond electron diffraction (FED) has the potential to directly observe transition state processes. The relevant motions for this barrier-crossing event occur on the hundred femtosecond time-scale. Recent advances in the development of high-flux electron pulse sources with the required time resolution and sensitivity to capture barrier-crossing processes are described in the context of attaining atomic level details of such structural dynamics—seeing chemical events as they occur. Initial work focused on the ordered-to-disordered phase transition of Al under strong driving conditions for which melting takes on nm or molecular scale dimensions. This work has been extended to Au, which clearly shows a separation in time-scales for lattice heating and melting. It also demonstrates that superheated face-centred cubic (FCC) metals melt through thermal mechanisms involving homogeneous nucleation to propagate the disordering process. A new concept exploiting electron–electron correlation is introduced for pulse characterization and determination of t =0 to within 100 fs as well as for spatial manipulation of the electron beam. Laser-based methods are shown to provide further improvements in time resolution with respect to pulse characterization, absolute t =0 determination, and the potential for electron acceleration to energies optimal for time-resolved diffraction.


Author(s):  
David C. Joy

Electron channeling patterns (ECP) were first found by Coates (1967) while observing a large bulk, single crystal of silicon in a scanning electron microscope. The geometric pattern visible was shown to be produced as a result of the changes in the angle of incidence, between the beam and the specimen surface normal, which occur when the sample is examined at low magnification (Booker, Shaw, Whelan and Hirsch 1967).A conventional electron diffraction pattern consists of an angularly resolved intensity distribution in space which may be directly viewed on a fluorescent screen or recorded on a photographic plate. An ECP, on the other hand, is produced as the result of changes in the signal collected by a suitable electron detector as the incidence angle is varied. If an integrating detector is used, or if the beam traverses the surface at a fixed angle, then no channeling contrast will be observed. The ECP is thus a time resolved electron diffraction effect. It can therefore be related to spatially resolved diffraction phenomena by an application of the concepts of reciprocity (Cowley 1969).


Author(s):  
G. G. Hembree ◽  
M. A. Otooni ◽  
J. M. Cowley

The formation of oxide structures on single crystal films of metals has been investigated using the REMEDIE system (for Reflection Electron Microscopy and Electron Diffraction at Intermediate Energies) (1). Using this instrument scanning images can be obtained with a 5 to 15keV incident electron beam by collecting either secondary or diffracted electrons from the crystal surface (2). It is particularly suited to studies of the present sort where the surface reactions are strongly related to surface morphology and crystal defects and the growth of reaction products is inhomogeneous and not adequately described in terms of a single parameter. Observation of the samples has also been made by reflection electron diffraction, reflection electron microscopy and replication techniques in a JEM-100B electron microscope.A thin single crystal film of copper, epitaxially grown on NaCl of (100) orientation, was repositioned on a large copper single crystal of (111) orientation.


2019 ◽  
Author(s):  
Haoke Zhang ◽  
Lili Du ◽  
Lin Wang ◽  
Junkai Liu ◽  
Qing Wan ◽  
...  

<p>Building molecular machine has long been a dream of scientists as it is expected to revolutionize many aspects of technology and medicine. Implementing the solid-state molecular motion is the prerequisite for a practical molecular machine. However, few works on solid-state molecular motion have been reported and it is almost impossible to “see” the motion even if it happens. Here the light-driven molecular motion in solid state is discovered in two non-conjugated molecules <i>s</i>-DPE and <i>s</i>-DPE-TM, resulting in the formation of excited-state though-space complex (ESTSC). Meanwhile, the newly formed ESTSC generates an abnormal visible emission which is termed as clusteroluminescence. Notably, the original packing structure can recover from ESTSC when the light source is removed. These processes have been confirmed by time-resolved spectroscopy and quantum mechanics calculation. This work provides a new strategy to manipulate and “see” solid-state molecular motion and gains new insights into the mechanistic picture of clusteroluminescence.<br></p>


Sign in / Sign up

Export Citation Format

Share Document