scholarly journals ANaN — ANalyse And Navigate: Debugging Compute Clusters with Techniques from Functional Programming and Text Stream Processing

2020 ◽  
Vol 245 ◽  
pp. 01041
Author(s):  
Alexander Adler ◽  
Udo Kebschull

Monitoring is an indispensable tool for the operation of any large installation of grid or cluster computing, be it high energy physics or elsewhere. Usually, monitoring is configured to collect a small amount of data, just enough to enable detection of abnormal conditions. Once detected, the abnormal condition is handled by gathering all information from the affected components. This data is processed by querying it in a manner similar to a database. This contribution shows how the metaphor of a debugger (for software applications) can be transferred to a compute cluster. The concepts of variables, assertions and breakpoints that are used in debugging can be applied to monitoring by defining variables as the quantities recorded by monitoring and breakpoints as invariants formulated via these variables. It is found that embedding fragments of a data extracting and reporting tool such as the UNIX tool awk facilitates concise notations for commonly used variables since tools like awk are designed to process large event streams (in textual representations) with bounded memory. A functional notation similar to both the pipe notation used in the UNIX shell and the point-free style used in functional programming simplify the combination of variables that commonly occur when formulating breakpoints.

2021 ◽  
Vol 251 ◽  
pp. 03068
Author(s):  
Mason Proffitt ◽  
Gordon Watts

The traditional approach in HEP analysis software is to loop over every event and every object via the ROOT framework. This method follows an imperative paradigm, in which the code is tied to the storage format and steps of execution. A more desirable strategy would be to implement a declarative language, such that the storage medium and execution are not included in the abstraction model. This will become increasingly important to managing the large dataset collected by the LHC and the HL-LHC. A new analysis description language (ADL) inspired by functional programming, FuncADL, was developed using Python as a host language. The expressiveness of this language was tested by implementing example analysis tasks designed to benchmark the functionality of ADLs. Many simple selections are expressible in a declarative way with FuncADL, which can be used as an interface to retrieve filtered data. Some limitations were identified, but the design of the language allows for future extensions to add missing features. FuncADL is part of a suite of analysis software tools being developed by the Institute for Research and Innovation in Software for High Energy Physics (IRIS-HEP). These tools will be available to develop highly scalable physics analyses for the LHC.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Domenico Giordano ◽  
Manfred Alef ◽  
Luca Atzori ◽  
Jean-Michel Barbet ◽  
Olga Datskova ◽  
...  

AbstractThe HEPiX Benchmarking Working Group has developed a framework to benchmark the performance of a computational server using the software applications of the High Energy Physics (HEP) community. This framework consists of two main components, named HEP-Workloads and HEPscore. HEP-Workloads is a collection of standalone production applications provided by a number of HEP experiments. HEPscore is designed to run HEP-Workloads and provide an overall measurement that is representative of the computing power of a system. HEPscore is able to measure the performance of systems with different processor architectures and accelerators. The framework is completed by the HEP Benchmark Suite that simplifies the process of executing HEPscore and other benchmarks such as HEP-SPEC06, SPEC CPU 2017, and DB12. This paper describes the motivation, the design choices, and the results achieved by the HEPiX Benchmarking Working group. A perspective on future plans is also presented.


Author(s):  
Preeti Kumari ◽  
◽  
Kavita Lalwani ◽  
Ranjit Dalal ◽  
Ashutosh Bhardwaj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document