scholarly journals Simultaneous Global and Local Alignment of the Belle II Tracking Detectors

2021 ◽  
Vol 251 ◽  
pp. 03028
Author(s):  
Tadeas Bilka ◽  
Jakub Kandra ◽  
Claus Kleinwort ◽  
Radek Zlebcik

The alignment of the Belle II tracking system, composed of a pixel and strip vertex detectors and central drift chamber, is described by approximately sixty thousand parameters; from local alignment of sensors and wires to relative global alignment of the sub-detectors. In the next data reprocessing, scheduled since Spring 2021, we aim to determine all parameters in a simultaneous fit by Millepede II, where recent developments allow to achieve a direct solution of the full problem in about one hour and make it practically feasible for regular detector alignment. The tracking detectors and the alignment technique are described and the alignment strategy is discussed in the context of studies on simulations and experience obtained from recorded data. Preliminary results and further refinements based on studies of real Belle II data are presented.

2019 ◽  
Vol 214 ◽  
pp. 02039 ◽  
Author(s):  
Stefano Spataro

The Belle II experiment has started to take data in 2018, studying e+e- collisions at the KEK facility in Tsukuba (Japan), in a center of mass energy range of the Bottomonium states. The tracking system includes a combination of hit measurements coming from the vertex detector, made of pixel detectors and double-sided silicon strip detectors, and acentral drift chamber, inside a solenoid of 1.5 T magnetic field. Once the pattern recognition routines have identified the track candidates, hit measurements are fitted taking into account the different information coming from different detectors, the energy loss in the materials and the inhomogeneity of the magnetic field. Track fitting is performed by the generic track-fitting software GENFIT, which includes a Kalman filter improved by a deterministic annealing filter, in order to reject outlier hits coming from not correctly associated hits by the pattern recognition. Several mass hypotheses are used in the fit, in order to achieve the best track parameter estimation for each particle kind. This article presents the design of the track fitting in the Belle II software, showing results in terms of track parameter estimation as well as computing performances.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Qiong Lou ◽  
Junfeng Li ◽  
Yaguan Qian ◽  
Anlin Sun ◽  
Fang Lu

RGB-infrared (RGB-IR) person reidentification is a challenge problem in computer vision due to the large crossmodality difference between RGB and IR images. Most traditional methods only carry out feature alignment, which ignores the uniqueness of modality differences and is difficult to eliminate the huge differences between RGB and IR. In this paper, a novel AGF network is proposed for RGB-IR re-ID task, which is based on the idea of global and local alignment. The AGF network distinguishes pedestrians in different modalities globally by combining pixel alignment and feature alignment and highlights more structure information of person locally by weighting channels with SE-ResNet-50, which has achieved ideal results. It consists of three modules, including alignGAN module ( A ), crossmodality paired-images generation module ( G ), and feature alignment module ( F ). First, at pixel level, the RGB images are converted into IR images through the pixel alignment strategy to directly reduce the crossmodality difference between RGB and IR images. Second, at feature level, crossmodality paired images are generated by exchanging the modality-specific features of RGB and IR images to perform global set-level and fine-grained instance-level alignment. Finally, the SE-ResNet-50 network is used to replace the commonly used ResNet-50 network. By automatically learning the importance of different channel features, it strengthens the ability of the network to extract more fine-grained structural information of person crossmodalities. Extensive experimental results conducted on SYSU-MM01 dataset demonstrate that the proposed method favorably outperforms state-of-the-art methods. In addition, we evaluate the performance of the proposed method on a stronger baseline, and the evaluation results show that a RGB-IR re-ID method will show better performance on a stronger baseline.


Author(s):  
Shoichi Shimazaki ◽  
Takashi Taniguchi ◽  
Tomohisa Uchida ◽  
Masahiro Ikeno ◽  
Nanae Taniguchi ◽  
...  
Keyword(s):  

2012 ◽  
Vol 1 (1) ◽  
pp. 14-38
Author(s):  
Perambur S. Neelakanta ◽  
Deepti Pappusetty

To ascertain specific features in bio-/medical-images, a new avenue of using the so-called Needleman-Wunsch (NW) and Smith-Waterman (SW) algorithms (of bioinformatics) is indicated. In general, NW/SW algorithms are adopted in genomic science to obtain optimal (global and local) alignment of two linear sequences (like DNA nucleotide bases) to determine the similarity features between them and such 1D-sequence algorithms are presently extended to compare 2D-images via binary correlation. The efficacy of the proposed method is tested with synthetic images and a brain scan image. Thus, the way of finding the location of a distinct part in a synthetic image and that of a tumour in the brain scan image is demonstrated.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Muaaz G. Awan ◽  
Jack Deslippe ◽  
Aydin Buluc ◽  
Oguz Selvitopi ◽  
Steven Hofmeyr ◽  
...  

Abstract Background Bioinformatic workflows frequently make use of automated genome assembly and protein clustering tools. At the core of most of these tools, a significant portion of execution time is spent in determining optimal local alignment between two sequences. This task is performed with the Smith-Waterman algorithm, which is a dynamic programming based method. With the advent of modern sequencing technologies and increasing size of both genome and protein databases, a need for faster Smith-Waterman implementations has emerged. Multiple SIMD strategies for the Smith-Waterman algorithm are available for CPUs. However, with the move of HPC facilities towards accelerator based architectures, a need for an efficient GPU accelerated strategy has emerged. Existing GPU based strategies have either been optimized for a specific type of characters (Nucleotides or Amino Acids) or for only a handful of application use-cases. Results In this paper, we present ADEPT, a new sequence alignment strategy for GPU architectures that is domain independent, supporting alignment of sequences from both genomes and proteins. Our proposed strategy uses GPU specific optimizations that do not rely on the nature of sequence. We demonstrate the feasibility of this strategy by implementing the Smith-Waterman algorithm and comparing it to similar CPU strategies as well as the fastest known GPU methods for each domain. ADEPT’s driver enables it to scale across multiple GPUs and allows easy integration into software pipelines which utilize large scale computational systems. We have shown that the ADEPT based Smith-Waterman algorithm demonstrates a peak performance of 360 GCUPS and 497 GCUPs for protein based and DNA based datasets respectively on a single GPU node (8 GPUs) of the Cori Supercomputer. Overall ADEPT shows 10x faster performance in a node-to-node comparison against a corresponding SIMD CPU implementation. Conclusions ADEPT demonstrates a performance that is either comparable or better than existing GPU strategies. We demonstrated the efficacy of ADEPT in supporting existing bionformatics software pipelines by integrating ADEPT in MetaHipMer a high-performance denovo metagenome assembler and PASTIS a high-performance protein similarity graph construction pipeline. Our results show 10% and 30% boost of performance in MetaHipMer and PASTIS respectively.


2020 ◽  
Vol 245 ◽  
pp. 06023
Author(s):  
Marco Milesi ◽  
Justin Tan ◽  
Phillip Urquijo

We present a major overhaul to lepton identification for the Belle II experiment, based on a novel multi-variate classification algorithm. Boosted decision trees are trained combining measurements from the electromagnetic calorimeter (ECL) and the tracking system. The chosen observables are sensitive to the different physics that governs interactions of hadrons, electrons and muons with the calorimeter crystals. Dedicated classifiers are used in various detector regions and lepton momentum ranges. The tree output is eventually combined with classifiers that rely upon independent measurements from other sub-detectors. Using simulation, the performance of the new algorithm is compared against the method used for analysis of the 2018 Belle II data, namely a likelihood discriminator based on the ratio of energy measured in the ECL over the momentum measured by the trackers. In the low momentum region, we largely improve the lepton-pion separation power, decreasing misidentification probability by a factor of 10 for electrons, and 2 for muons at fixed identification efficiency.


2022 ◽  
Vol 31 (163) ◽  
pp. 210149
Author(s):  
Alessio Casutt ◽  
Rémy Kinj ◽  
Esat-Mahmut Ozsahin ◽  
Christophe von Garnier ◽  
Alban Lovis

Stereotactic body radiation therapy is an alternative to surgery for early-stage, inoperable peripheral non-small cell lung cancer. As opposed to linear accelerator (linac)-based (e.g. gating) and free-breathing techniques, CyberKnife® with Synchrony® technology allows accurate radiation delivery by means of a real-time respiratory motion tracking system using, in most cases, metal fiducial markers (FMs) placed in the vicinity of the target. The aims of this review are as follows. First, to describe the safety and efficacy of the transthoracic, endovascular and endobronchial FM insertion techniques for peripheral pulmonary lesions (PPLs). Second, to analyse performance in terms of the migration and tracking rates of different FM types. Recent developments in FM tracking for central lesions will also be reviewed. In conclusion, for PPLs, the endobronchial approach provides a low rate of pneumothorax, offers the possibility of concurrent diagnostic sampling for both the PPL and the lymph nodes, and, finally, reduces the intervention time compared to other techniques. In this context, coil-tailed and coil-spring FMs have shown the lowest migration rate with a consequently high tracking rate.


Sign in / Sign up

Export Citation Format

Share Document