scholarly journals The source parameters of earthquakes of Bishkek geodynamic proving ground (Northern Tien Shan)

2021 ◽  
Vol 254 ◽  
pp. 02016
Author(s):  
Naylya Sycheva

Based on the method of polarity of signs of P-waves, the focal mechanisms of 1674 earthquakes with M ≥ 1.6, which occurred on the territory of the Bishkek geodynamic proving ground (BGPG) from 1994 to 2020, were determined. Some characteristics of the complete catalogue are presented. Quantitative distributions by the type of mechanisms and diagrams of azimuths of the main stress axes are constructed. A variety of focal mechanism of earthquake is observed, most of them are reverse fault, oblique reverse fault, and horizontal strike-slip fault. The compression axis for most of the events has a north-northwest direction and a sub-horizontal position. For 183, dynamic parameters (DP, source parameters) were obtained: spectral density Ω0, corner frequency f0, scalar seismic moment M0, source radius (Brune radius) r, and stress drop Δσ. The correlations between DP and energy characteristic (magnitude) and scalar seismic moment are investigated. The smallest correlation coefficient was obtained for stress drop.

2019 ◽  
Vol 5 (1) ◽  
pp. 18-23
Author(s):  
Tri Kusmita ◽  
Kirbani Brotopuspito ◽  
Hetty Triastuty

The source parameters describe the different physical properties of seismic volumes under the volcanoes. Source parameters that can be used to distinguish seismic events that are generated by different types of volcanoes activities. Temporary changes of the spectral source parameters provided a description of the main events during the eruption process.  Source parameters are calculated by correlating the relationship between source frequency at spectral displacement (corner frequency) and source parameters based on spectral sources of the Brune model (1970). The angular frequency obtained by applying the FFT algorithm to the VTA spectral displacement. The source parameters analyzed from this VTA earthquake are the spectral slope, seismic moment, stress drop, length of rupture, moment magnitude and radiation energy. Based on the obtained corner frequency (12 Hz-13 Hz), seismic moment, moment magnitude and energy radiation respectively were at 0.2 -1.9 x 1012 Nm, 0.7 - 2 Mw, and 0.1 - 9.5 x 1015 erg. The length of rupture were from 144.2 to 243.1 m, the spectra slope has 2.1 - 7.8 dB/cm, and stress drop are 0.1 - 7,6 bar. From the results of this study, it can be concluded that the changes of spectra characteristic and fluctuate of source patrameters value of VTA earthquakes was asosiated with the different  volcanic activity of Sinabung. Keywords: spectral, VTA, source parameter, volcanic earthquake


2021 ◽  
Author(s):  
Prosanta Kumar Khan ◽  
Bandana Baruah

<p>We investigate the source parameters of 87 local earthquakes (3.5 ≤ M<sub>L</sub> ≤ 5.0) that occurred in West Brahmaputra basin and its neighbouring area, using body wave displacement spectra. Seismic moment, corner frequency, source dimension and static stress drop are estimated using a grid search method based on the model of circular source. The measured seismic moments, corner frequency and moment magnitude ranges from   to  N-m, 0.7 to 12.1 and 3.0 to 4.8, respectively. The average ratio of corner frequency of P - and S - waves is 2.21.<strong> </strong>The scaling relationship of seismic moment against corner frequency is also studied for various tectonics regimes separately. Median stress drop values of individual earthquake vary from ~ 0.1 to 38.5 MPa, with an average value of about ~ 6 MPa. Spatial variation of stress drop observed for different tectonic unit reveals a higher stress drop values associated with West Brahmaputra basin, Shillong-Mikir plateau and Indo-Myanmar subduction zone suggesting a higher stress accumulation that may increase the probability of higher magnitude earthquake. The empirical relationship between M<sub>L</sub> and M<sub>W</sub> scale is also derived for hazard assessment.</p>


2020 ◽  
Vol 4 (4) ◽  
pp. 393-446
Author(s):  
N.A. Sycheva ◽  
◽  
L.M. Bogomolov ◽  

A generalization of the results on the stress drop and the specific seismic energy for the earthquakes in Northern Eurasia has been made. The relationship of these parameters with the seismic moment and the magnitude has been analyzed. Detailed studies for the Northern Tien Shan (Bishkek geodynamic polygon) were carried out, the values of the dynamic parameters of the sources for 183 earthquakes of various energy classes (K = 8.7–14.8) were obtained: angular frequency, spectral density parameter, scalar seismic moment, source radius, stress drop level, seismic energy and specific seismic energy. Two models have been used to compute the source radius and the stress drop – the Brune approach and the improved Madariaga–Kaneko–Shearer model. For relatively weak events, a power-law dependence (regression) of the stress drop on the scalar seismic moment M0 has been identified, that complies with the results on the power-law dependence of the specific seismic energy on M0 in a number of other regions of Northern Eurasia. The relationship between the type of source movement and the stress drop level has been noted as well.


2021 ◽  
Vol 228 (1) ◽  
pp. 134-146
Author(s):  
Jian Wen ◽  
Jiankuan Xu ◽  
Xiaofei Chen

SUMMARY The stress drop is an important dynamic source parameter for understanding the physics of source processes. The estimation of stress drops for moderate and small earthquakes is based on measurements of the corner frequency ${f_c}$, the seismic moment ${M_0}$ and a specific theoretical model of rupture behaviour. To date, several theoretical rupture models have been used. However, different models cause considerable differences in the estimated stress drop, even in an idealized scenario of circular earthquake rupture. Moreover, most of these models are either kinematic or quasi-dynamic models. Compared with previous models, we use the boundary integral equation method to simulate spontaneous dynamic rupture in a homogeneous elastic full space and then investigate the relations between the corner frequency, seismic moment and source dynamic parameters. Spontaneous ruptures include two states: runaway ruptures, in which the rupture does not stop without a barrier, and self-arresting ruptures, in which the rupture can stop itself after nucleation. The scaling relationships between ${f_c}$, ${M_0}$ and the dynamic parameters for runaway ruptures are different from those for self-arresting ruptures. There are obvious boundaries in those scaling relations that distinguish runaway ruptures from self-arresting ruptures. Because the stress drop varies during the rupture and the rupture shape is not circular, Eshelby's analytical solution may be inaccurate for spontaneous dynamic ruptures. For runaway ruptures, the relations between the corner frequency and dynamic parameters coincide with those in the previous kinematic or quasi-dynamic models. For self-arresting ruptures, the scaling relationships are opposite to those for runaway ruptures. Moreover, the relation between ${f_c}$ and ${M_0}$ for a spontaneous dynamic rupture depends on three factors: the dynamic rupture state, the background stress and the nucleation zone size. The scaling between ${f_c}$ and ${M_0}$ is ${f_c} \propto {M_0^{ - n}}$, where n is larger than 0. Earthquakes with the same dimensionless dynamic parameters but different nucleation zone sizes are self-similar and follow a ${f_c} \propto {M_0^{ - 1/3}}$ scaling law. However, if the nucleation zone size does not change, the relation between ${f_c}$ and ${M_0}$ shows a clear departure from self-similarity due to the rupture state or background stress.


1995 ◽  
Vol 38 (2) ◽  
Author(s):  
M. Di Bona ◽  
M. Cocco ◽  
A. Rovelli ◽  
R. Berardi ◽  
E. Boschi

The strong motion accelerograms recorded during the 1990 Eastern Sicily earthquake have been analyzed to investigate source and attenuation parameters. Peak ground motions (peak acceleration, velocity and displacement) overestimate the values predicted by the empirical scaling law proposed for other Italian earthquakes, suggesting that local site response and propagation path effects play an important role in interpreting the observed time histories. The local magnitude, computed from the strong motion accelerograms by synthesizing the Wood-Anderson response, is ML = 5.9, that is sensibly larger than the local magnitude estimated at regional distances from broad-band seismograms (ML = 5.4). The standard omega-square source spectral model seems to be inadequate to describe the observed spectra over the entire frequency band from 0.2 to 20 Hz. The seismic moment estimated from the strong motion accelerogram recorded at the closest rock site (Sortino) is Mo = 0.8 x 1024 dyne.cm, that is roughly 4.5 times lower than the value estimated at regional distances (Mo = 3.7 x 1024 dyne.cm) from broad-band seismograms. The corner frequency estimated from the accelera- tion spectra i.5 J; = 1.3 Hz, that is close to the inverse of the dUl.ation of displacement pulses at the two closest recording sites. This value of corner tì.equency and the two values of seismic moment yield a Brune stress drop larger than 500 bars. However, a corner frequency value off; = 0.6 Hz and the seismic moment resulting from regional data allows the acceleration spectra to be reproduced on the entire available frequency band yielding to a Brune stress drop of 210 bars. The ambiguity on the corner frequency value associated to this earthquake is due to the limited frequency bandwidth available on the strong motion recordil1gs. Assuming the seismic moment estimated at regional distances from broad-band data, the moment magnitude for this earthquake is 5.7. The higher local magnitude (5.9) compared with the moment magnitude (5.7) is due to the weak regional attenuation. Beside this, site amplifications due to surface geology have produced the highest peak ground motions among those observed at the strong motion sites.


2020 ◽  
Vol 223 (1) ◽  
pp. 233-253
Author(s):  
X Chen ◽  
R E Abercrombie

SUMMARY We calculate source parameters for fluid-injection induced earthquakes near Guthrie, Oklahoma, guided by synthetic tests to quantify uncertainties. The average stress drop during an earthquake is a parameter fundamental to ground motion prediction and earthquake source physics, but it has proved hard to measure accurately. This has limited our understanding of earthquake rupture, as well as the spatio-temporal variations of fault strength. We use synthetic tests based on a joint spectral-fitting method to define the resolution limit of the corner frequency as a function of the maximum frequency of usable signal, for both individual spectra and the average from multiple stations. Synthetic tests based on stacking analysis find that an improved stacking approach can recover the true input stress drop if the corner frequencies are within the resolution limit defined by joint spectral-fitting. We apply the improved approach to the Guthrie sequence, using different wave types and signal-to-noise criteria to understand the stability of the calculated stress drop values. The results suggest no systematic scaling relationship of stress drop for M ≤ 3.1 earthquakes, but larger events (M ≥ 3.5) tend to have higher average stress drops. Some robust spatio-temporal variations can be linked to the triggering processes and indicate possible stress heterogeneity within the fault zone. Tight clustering of low stress drop events at the beginning stage of the sequence suggests that pore pressure influences earthquake source processes. Events at shallow depth have lower stress drop compared to deeper events. The largest earthquake occurred within a cluster of high stress drop events, likely rupturing a strong asperity.


2020 ◽  
Author(s):  
Wenzheng Gong ◽  
Xiaofei Chen

<p>Spectra analysis is helpful to understand earthquake rupture processes and estimate source parameters like stress drop. Obtaining real source spectra and source time function isn’t easy, because the station recordings contain path effect and we usually can’t get precise path information. Empirical Green’s function (EGF) method is a popular way to cancel out the path effect, main two of which are the stacking spectra method (Prieto et al, 2006) and the spectral ratio method (Viegas et al, 2010; Imanishi et al, 2006). In our study, we apply the latter with multitaper spectral analysis method (Prieto et al, 2009) to calculate relative source spectra and relative source time function. Target event and EGFs must have similar focal mechanism and be collocated, so we combine correlation coefficient of wave at all stations and focal mechanism similarity to select proper EGFs.</p><p>The Bucaramanga nest has very high seismicity, so it’s suitable to calculate source spectra by using EGF method. We calculate the source spectra and source time function of about 1540 earthquakes (3-5.7ml, 135-160km depth) at Bucaramanga nest in Colombia. Simultaneously we also estimate corner frequency by fitting spectral source model (Brune, 1970; Boatwright, 1980) and stress drop using simple model (Eshelby, 1957) of earthquakes with multiple station recordings or EGFs. We obtain about 30000 events data with 12 stations from National Seismological Network of Colombia (RSNC).</p><p>The result show that the source spectra of most earthquakes fitted well by omega-square model are smooth, and the source spectra of some have obvious ‘holes’ near corner frequency, and the source time function of a few earthquakes appear two separate peeks. The first kind of earthquakes are style of self-arresting ruptures (Xu et al. 2015), which can be autonomously arrested by itself without any outside interference. Abercrombie (2014) and Wen et al. (2018) both researched the second kind of earthquakes and Wen think that this kind of earthquakes are style of the runaway ruptures including subshear and supershear ruptures. The last kind of earthquakes maybe be caused by simultaneous slip on two close rupture zone. Stress drop appear to slightly increase with depth and are very high (assuming rupture velocity/s wave velocity is 0.9). We also investigate the high-frequency falloff n, usually 2, of Brune model and Boatwright model by fitting all spectra, and find that the best value of n for Boatwright model is 2 and for Brune model is 3.5.</p>


Author(s):  
Seong Ju Jeong ◽  
Brian W. Stump ◽  
Heather R. DeShon ◽  
Louis Quinones

ABSTRACT Earthquakes in the Fort Worth basin (FWB) have been induced by the disposal of recovered wastewater associated with extraction of unconventional gas since 2008. Four of the larger felt earthquakes, each on different faults, prompted deployment of local distance seismic stations and recordings from these four sequences are used to estimate the kinematic source characteristics. Source spectra and the associated source parameters, including corner frequency, seismic moment, and stress drop, are estimated using a modified generalized inversion technique (GIT). As an assessment of the validity of the modified GIT approach, corner frequencies and stress drops from the GIT are compared to estimates using the traditional empirical Green’s function (EGF) method for 14 target events. For these events, corner-frequency residuals (GIT−EGF) have a mean of −0.31 Hz, with a standard deviation of 1.30 Hz. We find consistent mean stress drops using the GIT and EGF methods, 9.56 and 11.50 MPa, respectively, for the common set of target events. The GIT mean stress drop for all 79 earthquakes is 5.33 MPa, similar to estimates for global intraplate earthquakes (1–10 MPa) as well as other estimates for induced earthquakes near the study area (1.7–9.5 MPa). Stress drops exhibit no spatial or temporal correlations or depth dependency. In addition, there are no time or space correlations between estimated FWB stress drops and modeled pore-pressure perturbations. We conclude that induced earthquakes in the FWB occurring on normal faults in the crystalline basement release pre-existing tectonic stresses and that stress drops on the four sequences targeted in this study do not directly reflect perturbations in pore-fluid pressure on the fault.


Author(s):  
Bei Wang ◽  
Rebecca M. Harrington ◽  
Yajing Liu ◽  
Honn Kao ◽  
Hongyu Yu

ABSTRACT On 17 August 2015, an Mw 4.6 earthquake occurred northwest of Fort St. John, British Columbia, possibly induced by hydraulic fracturing (HF). We use data from eight broadband seismometers located ∼50  km from the hypocenter to detect and estimate source parameters of more than 300 events proximal to the mainshock. Stress-drop values estimated using seismic moment and corner frequency from single-event spectra and spectral ratios range from ∼1 to 35 MPa, within the typical range of tectonic earthquakes. We observe an ∼5-day delay between the onset of fluid injection and the mainshock, a b-value of 0.78 for the sequence, and a maximum earthquake magnitude larger than the prediction based on the total injection volume, suggesting that the Mw 4.6 sequence occurred on a pre-existing fault and that the maximum magnitude is likely controlled by tectonic conditions. Results presented here show that pre-existing fault structures should be taken into consideration to better estimate seismic hazard associated with HF operations and to develop schemes for risk mitigation in close proximity to HF wells.


Sign in / Sign up

Export Citation Format

Share Document