scholarly journals Heavy-quark mesons in the diabatic approach: string breaking and the quarkoniumlike spectrum

2022 ◽  
Vol 258 ◽  
pp. 04001
Author(s):  
Roberto Bruschini

The Born-Oppenheimer approximation provides a description of heavy-quark mesons firmly based on lattice QCD, but its validity is limited to the lightest states lying far below the first open-flavour meson-meson threshold. This limitation can be overcome in the diabatic framework, a formalism first introduced in molecular physics, where the dynamics is encoded in a potential matrix whose elements can be derived from unquenched lattice QCD studies of string breaking. The off-diagonal elements of the potential matrix provide interaction between heavy quark-antiquark and meson-meson pairs, from which the mixing of quarkonium states with molecular components and the OZI-allowed strong decay widths are directly calculated. This allows for a QCD-based unified description of conventional quarkonium and unconventional mesons containing quark-antiquark and meson-meson components, what has proved to be successful for charmoniumlike and bottomoniumlike resonances.

2006 ◽  
Vol 74 (3) ◽  
Author(s):  
M. S. Cook ◽  
H. R. Fiebig

2012 ◽  
Vol 85 (1) ◽  
Author(s):  
Debasish Banerjee ◽  
Saumen Datta ◽  
Rajiv Gavai ◽  
Pushan Majumdar

2012 ◽  
Vol 85 (3) ◽  
Author(s):  
C. McNeile ◽  
C. T. H. Davies ◽  
E. Follana ◽  
K. Hornbostel ◽  
G. P. Lepage ◽  
...  

Author(s):  
FrÉdÉric Merkt

Molecular-physics aspects of cold chemistry are introduced with the example of few-electron molecules. After a brief overview of general aspects of molecular physics, the solution of the molecular Schrödinger equation is presented based on the Born-Oppenheimer approximation and the subsequent evaluation of adiabatic, nonadiabatic, relativistic and radiative (QED) corrections. Low-temperature chemical phenomena are introduced with the example of ion-molecule reactions, using the classical Langevin model for barrier-free exothermic reactions as reference. Then, methods to generate cold few-electron molecules by supersonic-beam-deceleration methods such as Stark, Zeeman, and Rydberg-Stark decelerations are presented. Two astrophysically important reactions, the reaction between H2 and H2+ forming H3+ and H, a very fast reaction following Langevin-capture going over to quantum-Langevin capture at low temperature, and the radiative association reaction H+ + H forming H2+, a very slow reaction in which quantum effects (shape resonances) become important at low temperatures, are used to illustrate the concepts introduced.


2019 ◽  
Vol 34 (27) ◽  
pp. 1950220
Author(s):  
F. Chezani Sharahi ◽  
M. Monemzadeh ◽  
A. Abdoli Arani

In this study, the bound state energy of a four-quark system was analytically calculated as a two heavy–heavy anti-quarks [Formula: see text] and two light–light quarks [Formula: see text]. Tetraquark was assumed to be a bound state of two-body system consisting of two mesons, each containing a light quark and a heavy antiquark. Due to the presence of heavy mesons in the tetraquark, Born–Oppenheimer approximation was used to study its bound states. To assess the bounding energy, Schrödinger equation was solved using lattice QCD [Formula: see text] potential, having expanded the tetraquark potential [Formula: see text] up to 11th term. Binding energy state and wave function, however, were obtained in the scalar [Formula: see text] channel. Graphical results for wave functions obtained versus antiquark–antiquark distance [Formula: see text] confirmed the existence of the tetraquark [Formula: see text]. Analytical bound state energy obtained here was in good agreement with several numerical ones published in the literature, confirming the accuracy of the approach taken here.


1996 ◽  
Vol 05 (04) ◽  
pp. 433-440 ◽  
Author(s):  
DHURJATI PRASAD DATTA

A simple quantum mechanical model of a closed interacting system is studied following the intrinsic time formalism developed recently, on the basis of the modified Born-Oppenheimer approximation. Apart from shedding further insights into the recent results on a possible nongravitating vacuum energy in the universe, the study also offers potentially interesting possibilities even in atomic/molecular physics.


Sign in / Sign up

Export Citation Format

Share Document