langevin model
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 22)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicolas Waisbord ◽  
Amin Dehkharghani ◽  
Jeffrey S. Guasto

AbstractDirected motility enables swimming microbes to navigate their environment for resources via chemo-, photo-, and magneto-taxis. However, directed motility competes with fluid flow in porous microbial habitats, affecting biofilm formation and disease transmission. Despite this broad importance, a microscopic understanding of how directed motility impacts the transport of microswimmers in flows through constricted pores remains unknown. Through microfluidic experiments, we show that individual magnetotactic bacteria directed upstream through pores display three distinct regimes, whereby cells swim upstream, become trapped within a pore, or are advected downstream. These transport regimes are reminiscent of the electrical conductivity of a diode and are accurately predicted by a comprehensive Langevin model. The diode-like behavior persists at the pore scale in geometries of higher dimension, where disorder impacts conductivity at the sample scale by extending the trapping regime over a broader range of flow speeds. This work has implications for our understanding of the survival strategies of magnetotactic bacteria in sediments and for developing their use in drug delivery applications in vascular networks.


2021 ◽  
Vol 21 (1) ◽  
pp. 39-44
Author(s):  
Mikhail Guzev ◽  
◽  
A.A. Dmitriev ◽  

The analytical representation for the heat flux is obtained on the basis of the constructed solution in a one-dimensional harmonic model for two particles. At $t\rightarrow\infty$, the amplitude asymptotic behavior of the flow passing through the particle is shown to be determined by the temperature difference between the left and right heat reservoirs, between which the system is located. The dynamic behavior of the thermal characteristic is oscillating in time; its oscillation period is set by the parameter of the system.


2021 ◽  
Author(s):  
Alberto Ippolito ◽  
Antonio DeSimone ◽  
Vikram Deshpande

Adherent cells seeded on substrates spread and evolve their morphology while simultaneously displaying motility. Phenomena such as contact guidance viz. the alignment of cells on patterned substrates, are strongly linked to the coupling of morphological evolution with motility. Here we employ a recently developed statistical thermodynamics framework for modelling the non-thermal fluctuating response of the cells to probe this coupling. This thermodynamic framework is first extended to predict temporal responses via a Langevin style model. The Langevin model is then shown to not only predict the different experimentally observed temporal scales for morphological observables such as cell area and elongation but also the interplay of morphology with motility that ultimately leads to contact guidance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1257
Author(s):  
Ulrich M. Engelmann ◽  
Ahmed Shalaby ◽  
Carolyn Shasha ◽  
Kannan M. Krishnan ◽  
Hans-Joachim Krause

Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90% of the frequency mixing magnetic response signal is generated by the largest 10% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory.


2021 ◽  
pp. 108037
Author(s):  
Shreetam Behera ◽  
Debi Prosad Dogra ◽  
Malay Kumar Bandyopadhyay ◽  
Partha Pratim Roy
Keyword(s):  

2021 ◽  
Author(s):  
Martin Ferrand ◽  
Mathieu Guingo ◽  
Christian Beauchêne ◽  
Maurice Mimoun ◽  
Jean-Pierre Minier

<p>Faced with the first Covid-19 epidemic wave in France, the hospital sector has been forced to considerably increase the number of intensive care beds. To meet this crucial need, some hospital structures have been adapted. This is the case with one of the intensive care sectors of the Burn Treatment Center (CTB) at Saint-Louis Hospital, which has intensive care rooms dedicated to treat burn patients. Beyond the provision and adaptation of these care structures to Covid patients, the hospital has currently an imperative need to progress on the understanding of the dispersion of buccopharyngeal droplets which constitute one of the risk vectors of airborne transmission and as a corollary of manual transmission.</p><p>As part of a partnership between CTB and the EDF Foundation, a CEREA research team provided the hospital with its aeraulics expertise which mainly relies on the digital modelling tool (CFD) code_saturne developed for more than 20 years by EDF-Research and Development. Numerical modelling in fluid mechanics makes it possible to accurately reproduce an architectural ensemble, to describe the air flows and what they carry, and thus to better understand where the risks of airborne contamination lie.</p><p>The objective of the study is to understand the dispersion of the buccopharyngeal droplets in the resuscitation room according to their sizes, identify the areas at risk of deposit, adapt the treatment protocols and optimise the level and the frequency of systematic bio-cleaning of surfaces exposed to deposit of oral-pharyngeal droplets. It should be noted that we are not directly dealing with the spread of the covid-19 virus but with one of the potential vehicles of oral-pharyngeal droplets.</p><p>The methodology consist of a parametric study of poly-dispersion of classes of particles. Each class correspond to a droplet diameter and contains one million of independent droplets for which a Generalized Langevin Model is solved to calculate the instantaneous fluid velocity seen from the particle, the particle velocity and its position. These particles are carried by a turbulent flow using the Reynolds Averaged Navier-Stokes approach, calculating only moments. The specific characteristics of this model allow dealing with poly-dispersed two-phase flow even for particles with very small diameters. The studied parameters are the angle of droplet ejection, the volume of humid air ejected and the time duration of this event and the air flowing activation of the room.</p><p>Expected conclusions are found: the largest particles sediment the fastest and close to the source, the finest droplets follow the streamlines to the air vents. In addition, non-intuitive areas of potential deposit are observed and a major impact of air conditioning on residence time is demonstrated.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.b43390093fff52971650161/sdaolpUECMynit/12UGE&app=m&a=0&c=4345eb35e27ea319150c5cf3afab9d44&ct=x&pn=gnp.elif&d=1" alt=""></p>


2021 ◽  
Author(s):  
Kevin Pierce ◽  
Marwan Hassan

<p>Bed load experiments reveal a range of possibilities for the downstream velocity distributions of moving particles, including normal, exponential, and gamma distributions. Although bed load velocities are key for understanding fluctuations in transport rates, existing models have not accounted for the full range of observations. Here, we present a generalized Langevin model of particle transport that includes turbulent drag and episodic particle-bed collisions. By means of analytical calculations, we demonstrate that momentum dissipation by particle-bed collisions controls the form of the bed load velocity distribution. As collisions vary between elastic and inelastic, the velocity distribution interpolates between normal and exponential. These results add context to conflicting experiments on bed load velocities and suggest that granular interactions regulate sediment dynamics and transport rate fluctuations.</p>


2021 ◽  
Vol 12 (1) ◽  
pp. 69-81
Author(s):  
Jelle van den Berk ◽  
Sybren Drijfhout ◽  
Wilco Hazeleger

Abstract. Hysteresis diagrams of the Atlantic meridional overturning circulation (AMOC) under freshwater forcing from climate models of intermediate complexity are fitted to a simple model based on the Langevin equation. A total of six parameters are sufficient to quantitatively describe the collapses seen in these simulations. Reversing the freshwater forcing results in asymmetric behaviour that is less well captured and appears to require a more complicated model. The Langevin model allows for comparison between models that display an AMOC collapse. Differences between the climate models studied here are mainly due to the strength of the stable AMOC and the strength of the response to a freshwater forcing.


Sign in / Sign up

Export Citation Format

Share Document