scholarly journals Bottomonium observables in an open quantum system using the quantum trajectories method

2022 ◽  
Vol 258 ◽  
pp. 05005
Author(s):  
Peter Vander Griend

We solve the Lindblad equation describing the Brownian motion of a Coulombic heavy quark-antiquark pair in a strongly coupled quark gluon plasma using the Monte Carlo wave function method. The Lindblad equation has been derived in the framework of pNRQCD and fully accounts for the quantum and non-Abelian nature of the system. The hydrodynamics of the plasma is realistically implemented through a 3+1D dissipative hydrodynamics code. We compute the bottomonium nuclear modification factor and elliptic flow and compare with the most recent LHC data. The computation does not rely on any free parameter, as it depends on two transport coefficients that have been evaluated independently in lattice QCD. Our final results, which include late-time feed down of excited states, agree well with the available data from LHC 5.02 TeV PbPb collisions.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Nora Brambilla ◽  
Miguel Ángel Escobedo ◽  
Michael Strickland ◽  
Antonio Vairo ◽  
Peter Vander Griend ◽  
...  

Abstract We solve the Lindblad equation describing the Brownian motion of a Coulombic heavy quark-antiquark pair in a strongly coupled quark-gluon plasma using the highly efficient Monte Carlo wave-function method. The Lindblad equation has been derived in the framework of pNRQCD and fully accounts for the quantum and non-Abelian nature of the system. The hydrodynamics of the plasma is realistically implemented through a 3+1D dissipative hydrodynamics code. We compute the bottomonium nuclear modification factor and compare with the most recent LHC data. The computation does not rely on any free parameter, as it depends on two transport coefficients that have been evaluated independently in lattice QCD. Our final results, which include late-time feed down of excited states, agree well with the available data from LHC 5.02 TeV PbPb collisions.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
B. G. Zakharov

Abstract We perform an analysis of jet quenching in heavy and light ion collisions for scenarios without and with quark-gluon plasma formation in pp collisions. We find that the results for these scenarios are very similar, and both of them are in reasonable agreement with data for heavy ion collisions. However, their results become differ significantly for light nuclei. Using the parameters fitted to heavy ion data on the nuclear modification factor RAA, we make predictions for 0.2 and 7 TeV O+O collisions that can be verified by future experiments at RHIC and the LHC.


2004 ◽  
Vol 19 (22) ◽  
pp. 1669-1679 ◽  
Author(s):  
A. SZCZUREK ◽  
A. BUDZANOWSKI

It has been argued recently that the so-called nuclear modification factor (RAA) is an observable useful for identifying the quark–gluon plasma. We discuss the effect of Fermi motion in nuclei on RAA at CERN SPS and BNL RHIC energies. Contrary to the simple intuition, rather large effects are found for CERN SPS. The Fermi motion in nuclei contributes significantly to the Cronin effect. The effect found is qualitatively similar to the one observed experimentally at CERN energies and similar to the one obtained in the models of multiple scattering of initial partons. We predict different size of the effect for different types of hadrons, especially at low energies.


2018 ◽  
Vol 27 (01) ◽  
pp. 1850008 ◽  
Author(s):  
M. Suleymanov

We argue that [Formula: see text] distribution data from the LHC on the invariant differential yield of the charged primary particles in [Formula: see text] collisions at [Formula: see text] and in Pb–Pb collisions at [Formula: see text]TeV with six centrality bins contains several [Formula: see text] regions with special properties. These distributions were analyzed by fitting the data with exponential functions. We conclude that the regions reflect features of fragmentation and hadronization of partons through the string dynamics. The nuclear transparency results in negligible influence of the medium in the III region ([Formula: see text]), which has highest [Formula: see text] values. The effects and changes by the medium start to appear weakly in the II region ([Formula: see text]) and become stronger in the I region ([Formula: see text]). It seems that the II region has highest number of strings. The increase in string density in this region could lead to fusion of strings, appearance of a new string and collective behavior of the partons in the most central collisions. These phenomena can explain anomalous behavior of the Nuclear Modification Factor in the II region. We propose the II region as a possible area of Quark Gluon Plasma formation through string fusion. The first [Formula: see text] regions are the ones with the maximum number of hadrons and minimum number of strings due to direct hadronization of the low energy strings into two quark systems–mesons.


2020 ◽  
Vol 1643 (1) ◽  
pp. 012011
Author(s):  
C Hills

Abstract The baryon-to-meson ratio Λ c + / D 0 and the nuclear modification factor RAA in the charm sector are important observables to gain an understanding of how charm quarks hadronise and lose energy in the Quark-Gluon Plasma produced in heavy-ion collisions. In this contribution, recent measurements performed with the ALICE detector in pp, p–Pb and Pb–Pb collisions at 5.02 TeV are presented and compared with previous measurements in pp collisions at 7 TeV, measurements by the LHCb Collaboration and theoretical model predictions.


2018 ◽  
Vol 171 ◽  
pp. 18009
Author(s):  
Javier Martín Blanco

Charmonium states, such as the J/ψ and ψ(2S) mesons, are excellent probes of the deconfined state of matter, the Quark-Gluon Plasma (QGP) created in heavy ion collisions. In addition, the measurements in pPb collisions allow to study the cold nuclear matter effects, being crucial to disentangle these from the QGP-related effects in PbPb collisions. In this talk the new nuclear modification factor RAA of prompt and nonprompt J/ψ in PbPb collisions at [see formula in PDF] = 5.02 TeV were presented over a wide kinematic range (3 < pT < 50 GeV/c, |y| < 2.4), and fine event-centrality intervals. The results were compared to those at 2.76 TeV over a similar kinematic range. In addition, new prompt ψ(2S) RAA results at 5.02 TeV were reported. Finally the final prompt and nonprompt J/ψ results, as well as preliminary ψ(2S) results, in pPb collisions at 5.02 TeV, were discussed.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
P. Caucal ◽  
E. Iancu ◽  
A. H. Mueller ◽  
G. Soyez

Abstract Using a recently-developed perturbative-QCD approach for jet evolution in a dense quark-gluon plasma, we study the nuclear modification factor for the jet fragmentation function. The qualitative behaviour that we find is in agreement with the respective experimental observations in Pb+Pb collisions at the LHC: a pronounced nuclear enhancement at both ends of the spectrum. Our Monte Carlo simulations are supplemented with analytic estimates which clarify the physical interpretation of the results. The main source of theoretical uncertainty is the sensitivity of our calculations to a low-momentum cutoff which mimics confinement. To reduce this sensitivity, we propose a new observable, which describes the jet fragmentation into subjets and is infrared-and-collinear safe by construction. We present Monte Carlo predictions for the associated nuclear modification factor together with their physical interpretation.


Sign in / Sign up

Export Citation Format

Share Document