kinematic range
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Matteo Fael ◽  
Fabian Lange ◽  
Kay Schönwald ◽  
Matthias Steinhauser

Abstract We describe a method to numerically compute multi-loop integrals, depending on one dimensionless parameter x and the dimension d, in the whole kinematic range of x. The method is based on differential equations, which, however, do not require any special form, and series expansions around singular and regular points. This method provides results well suited for fast numerical evaluation and sufficiently precise for phenomenological applications. We apply the approach to four-loop on-shell integrals and compute the coefficient function of eight colour structures in the relation between the mass of a heavy quark defined in the $$ \overline{\mathrm{MS}} $$ MS ¯ and the on-shell scheme allowing for a second non-zero quark mass. We also obtain analytic results for these eight coefficient functions in terms of harmonic polylogarithms and iterated integrals. This allows for a validation of the numerical accuracy.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
V. M. Braun ◽  
A. N. Manashov ◽  
S. Moch ◽  
J. Schoenleber

Abstract Using the approach based on conformal symmetry we calculate the two-loop coefficient function for the vector flavor-nonsinglet contribution to deeply-virtual Compton scattering (DVCS). The analytic expression for the coefficient function in momentum fraction space is presented in the $$ \overline{\mathrm{MS}} $$ MS ¯ scheme. The corresponding next-to-next-to-leading order correction to the Compton form factor ℋ for a simple model of the generalized parton distribution appears to be rather large: a factor two smaller than the next-to-leading order correction, approximately ∼ 10% of the tree level result in the bulk of the kinematic range, for Q2 = 4 GeV2.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Hamed Abdolmaleki ◽  
◽  
Valerio Bertone ◽  
Daniel Britzger ◽  
Stefano Camarda ◽  
...  

Abstract We study charm production in charged-current deep-inelastic scattering (DIS) using the xFitter framework. Recent results from the LHC have focused renewed attention on the determination of the strange-quark parton distribution function (PDF), and the DIS charm process provides important complementary constraints on this quantity. We examine the current PDF uncertainty and use LHeC pseudodata to estimate the potential improvement from this proposed facility. As xFitter implements both fixed-flavor- and variable-flavor-number schemes, we can compare the impact of these different theoretical choices; this highlights some interesting aspects of multi-scale calculations. We find that the high-statistics LHeC data covering a wide kinematic range could substantially reduce the strange PDF uncertainty.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
S. P. Adhya ◽  
A. Adler ◽  
...  

Abstract We present a study of the inclusive charged-particle transverse momentum ($$p_{\mathrm{T}}$$pT) spectra as a function of charged-particle multiplicity density at mid-pseudorapidity, $$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta $$dNch/dη, in pp collisions at $$\sqrt{s}=5.02$$s=5.02 and 13 TeV covering the kinematic range $$|\eta |<0.8$$|η|<0.8 and $$0.15<p_{\mathrm{T}} <20$$0.15<pT<20 GeV/c. The results are presented for events with at least one charged particle in $$|\eta |<1$$|η|<1 (INEL$$\,>0$$>0). The $$p_\mathrm{T}$$pT spectra are reported for two multiplicity estimators covering different pseudorapidity regions. The $$p_{\mathrm{T}}$$pT spectra normalized to that for INEL$$\,>0$$>0 show little energy dependence. Moreover, the high-$$p_{\mathrm{T}}$$pT yields of charged particles increase faster than the charged-particle multiplicity density. The average $${ p}_{\mathrm{T}}$$pT as a function of multiplicity and transverse spherocity is reported for pp collisions at $$\sqrt{s}=13$$s=13 TeV. For low- (high-) spherocity events, corresponding to jet-like (isotropic) events, the average $$p_\mathrm{T}$$pT is higher (smaller) than that measured in INEL$$\,>0$$>0 pp collisions. Within uncertainties, the functional form of $$\langle p_{\mathrm{T}} \rangle (N_{\mathrm{ch}})$$⟨pT⟩(Nch) is not affected by the spherocity selection. While EPOS LHC gives a good description of many features of data, PYTHIA overestimates the average $$p_{\mathrm{T}}$$pT in jet-like events.


2019 ◽  
Vol 199 ◽  
pp. 01008 ◽  
Author(s):  
B. Ramstein ◽  
J. Adamczewski-Musch ◽  
O. Arnold ◽  
B. Arnoldi-Meadows ◽  
A. Belounnas ◽  
...  

The HADES collaboration uses the e+e− production as a probe of the resonance matter produced in collisions at incident energies of 1-3.5 GeV/nucleon at GSI. Elementary reactions provide useful references for these studies and give information on resonance Dalitz decays (R→Ne+e−). Such processes are sensitive to the structure of time-like electromagnetic baryon transitions in a kinematic range where (off-shell) vector mesons play a crucial role. Results obtained in proton-proton reactions and in a commissioning pion-beam experiment are reported and prospects for future pion beam experiments and for first hyperon Dalitz decay measurements are described. The connection with the investigations of medium effects to be continued with HADES in the next years at SIS18 and SIS100 is also discussed.


2018 ◽  
Vol 15 (5) ◽  
pp. 172988141880444 ◽  
Author(s):  
Arne-Christoph Hildebrandt ◽  
Konstantin Ritt ◽  
Daniel Wahrmann ◽  
Robert Wittmann ◽  
Felix Sygulla ◽  
...  

Bipedal robots can be better alternatives to other robots in certain applications, but their full potential can only be used if their entire kinematic range is cleverly exploited. Generating motions that are not only dynamically feasible but also take into account the kinematic limits as well as collisions in real time is one of the main challenges towards that goal. We present an approach to generate adaptable torso height trajectories to exploit the full kinematic range in bipedal locomotion. A simplified 2D model approximates the robot’s full kinematic model for multiple steps ahead. It is used to optimize the torso height trajectories while taking future motion kinematics into account. The method significantly improves the robot’s motion not only while walking in uneven terrain, but also during normal walking. Furthermore, we integrated the method in our framework for autonomous walking and we validated its real-time character in successfully conducted experiments.


2018 ◽  
Vol 171 ◽  
pp. 18009
Author(s):  
Javier Martín Blanco

Charmonium states, such as the J/ψ and ψ(2S) mesons, are excellent probes of the deconfined state of matter, the Quark-Gluon Plasma (QGP) created in heavy ion collisions. In addition, the measurements in pPb collisions allow to study the cold nuclear matter effects, being crucial to disentangle these from the QGP-related effects in PbPb collisions. In this talk the new nuclear modification factor RAA of prompt and nonprompt J/ψ in PbPb collisions at [see formula in PDF] = 5.02 TeV were presented over a wide kinematic range (3 < pT < 50 GeV/c, |y| < 2.4), and fine event-centrality intervals. The results were compared to those at 2.76 TeV over a similar kinematic range. In addition, new prompt ψ(2S) RAA results at 5.02 TeV were reported. Finally the final prompt and nonprompt J/ψ results, as well as preliminary ψ(2S) results, in pPb collisions at 5.02 TeV, were discussed.


2015 ◽  
Vol 39 ◽  
pp. 1560110
Author(s):  
Aparin Alexey ◽  
Tokarev Mikhail

Data on cumulative particle production in pA collisions with momentum [Formula: see text] are analyzed in the [Formula: see text]-scaling approach. Scaling function [Formula: see text] is constructed for different types of target nuclei and inclusive particle angle. The function is expressed via respective inclusive cross section and average multiplicity density of charged particles. This regime corresponds to low [Formula: see text] (low transverse momentum [Formula: see text]). Validity of the concept was verified for this data. A-dependence of the scaling function is studied for low-[Formula: see text] region. Self-similarity of hadron production in pA collisions is confirmed over a wide kinematic range.


Sign in / Sign up

Export Citation Format

Share Document