scholarly journals Computer simulation of complex of lysine dendrigraft with molecules of therapeutic KED peptide

2019 ◽  
Vol 24 ◽  
pp. 02008
Author(s):  
Igor Neelov ◽  
Valerii Bezrodnyi ◽  
Anna Marchenko ◽  
Emil Fatullaev ◽  
Sofia Miktaniuk

Lysine dendrimers and dendrigrafts are often used in biomedicine for drug and gene delivery to different target organs or cells. In present paper the possibility of complex formation by lysine dendrigraft and 16 molecules of therapeutic KED peptide was investigated using molecular dynamics simulation method. A system containing of one dendrigraftt and 16 KED peptides in water were studied. It was shown that stable complex consisting of the dendrigraft and the peptide molecules formed and structure of this complex was studied. Similar complexes could be used in future for delivery of other therapeutic peptides to target organs.

1999 ◽  
Vol 110 (8) ◽  
pp. 3736-3747 ◽  
Author(s):  
Victor S. Batista ◽  
Martin T. Zanni ◽  
B. Jefferys Greenblatt ◽  
Daniel M. Neumark ◽  
William H. Miller

2020 ◽  
Author(s):  
Keka Talukdar

Modeling and simulation is another way of finding the interaction between different drugs and chemical species with human cell. Preliminary studies before clinical trial involve computer simulation based on the physical modeling so that clinical trial can be made easier. In many aspects of drug developing, simulation is an essential tool. Here molecular dynamics simulation is performed for the interaction of the spike protein of Covid-19 virus and some of the recently used drugs. Also, the effect of caffeine, theanine, nicotine etc on the virus is found by simulation


2019 ◽  
Vol 97 (8) ◽  
pp. 869-874
Author(s):  
Xue-Qing Chen ◽  
Lei Tong

In this paper, mesoscopic lattice–Boltzmann method (LBM) and microscopic molecular dynamics simulation method were used to simulate droplet dynamic wetting under microgravity. In terms of LBM, the wetting process of a droplet on a solid wall surface was simulated by introducing the fluid–fluid and solid–fluid interactions. In terms of molecular dynamics simulation, the spreading process of water on gold surface was simulated. Calculation results showed that two kinds of calculation methods were based on the microscopic molecular theory or mesoscopic kinetics theory, and such models could effectively overcome the contact line paradox issue, which results from the macro-continuum assumption and non-slip boundary condition assumption. The spreading exhibits two-stage behavior: fast spreading and slow spreading stages. For the two simulation methods, the ratio of fast spreading stage duration to slow spreading duration, spreading capacity (equilibrium contact radius/initial radius), and the spreading exponent of the rapid stage were very close. However, the predictive spreading index of the slow spreading stage was different, owing to the different spreading mechanisms between meso- and nanoscales.


2019 ◽  
Vol 20 (4) ◽  
pp. 819 ◽  
Author(s):  
Md Rehman ◽  
Mohamed AlAjmi ◽  
Afzal Hussain ◽  
Gulam Rather ◽  
Meraj Khan

The bacteria expressing New Delhi Metallo-β-lactamase-1 (NDM-1) can hydrolyze all β-lactam antibiotics including carbapenems, causing multi-drug resistance. The worldwide emergence and dissemination of gene blaNDM-1 (produces NDM-1) in hospital and community settings, rising problems for public health. Indeed, there is an urgent need for NDM-1 inhibitors to manage antibiotic resistance. Here, we have identified novel non-β-lactam ring-containing inhibitors of NDM-1 by applying a high-throughput virtual screening of lead-like subset of ZINC database. The screened compounds were followed for the molecular docking, the molecular dynamics simulation, and then enzyme kinetics assessment. The adopted screening procedure funnels out five novel inhibitors of NDM-1 including ZINC10936382, ZINC30479078, ZINC41493045, ZINC7424911, and ZINC84525623. The molecular mechanics-generalized born surface area and molecular dynamics (MD) simulation showed that ZINC84525623 formed the most stable complex with NDM-1. Furthermore, analyses of the binding pose after MD simulation revealed that ZINC84525623 formed two hydrogen bonds (electrostatic and hydrophobic interaction) with key amino acid residues of the NDM-1 active site. The docking binding free energy and docking binding constant for the ZINC84525623 and NDM-1 interaction were estimated to be −11.234 kcal/mol, and 1.74 × 108 M−1 respectively. Steady-state enzyme kinetics in the presence of ZINC84525623 show the decreased catalytic efficiency (i.e., kcat/Km) of NDM-1 on various antibiotics. The findings of this study would be helpful in identifying novel inhibitors against other β-lactamases from a pool of large databases. Furthermore, the identified inhibitor (ZINC84525623) could be developed as efficient drug candidates.


2011 ◽  
Vol 399-401 ◽  
pp. 751-759
Author(s):  
Jian Liu ◽  
Jin Xing Kong ◽  
Da Jiang Lei ◽  
Ya Lin Zhang ◽  
Hai Feng Li ◽  
...  

The nanoindentation of diamond crystal [100] surface is studied in this paper, by using molecular dynamics simulation method and Tersoff potential. The total number of atoms in the model is exceed to 2,000,000. The crystal structure changes and the bond formations of C atoms under pressure load are analyzed. A light load causes lattice distortion but cannot cause bond breaking or hybridization transition from sp3 to sp2. When the load is enough heavy, the energy be imposed on the workpiece will beyond the range of lattice distortion, which can cause bond break and hybridization transition from sp3 to sp2.


Sign in / Sign up

Export Citation Format

Share Document