Design and control of micro robotic systems for micro-manipulation and minimally invasive surgery

2002 ◽  
Vol 12 (11) ◽  
pp. 19-26 ◽  
Author(s):  
P. Bidaud ◽  
J.-C. Guinot
Author(s):  
A. Mirbagheri ◽  
F. Farahmand ◽  
A. Meghdari ◽  
H. Sayyaadi ◽  
L. Savoj ◽  
...  

Laparoscopic surgery is a specific branch of minimally invasive surgery (MIS) that is performed on the abdomen and endoscopic tools are passed through the incision points and trocars on the abdominal wall, so they can reach the surgical site [1]. Robotic systems have been proved to be very useful as a cameraman in laparoscopic surgery; they are more stable with no fatigue and inattention and reduce the supernumerary staff required, provide excellent geometrical accuracy and improved personal control for the surgeon over the procedure, etc. The available robots for handling and control of laparoscopic lens include at least 4 actuators to fulfill the surgeon’s requirements [2]. The purpose of the present study was to develop a novel design for the laparoscope robotic arm in which while the systems move ability is maintained its active degrees of freedom are reduced.


Author(s):  
J. E. N. Jaspers ◽  
M. Shehata ◽  
F. Wijkhuizen ◽  
J. L. Herder ◽  
C. A. Grimbergen

Performing complex tasks in Minimally Invasive Surgery (MIS) is demanding due to a disturbed hand-eye co-ordination, the use of non-ergonomic instruments with limited degrees of freedom (DOFs) and a lack of force feedback. Robotic telemanipulatory systems enhance surgical dexterity by providing up to 7 DOFs. They allow the surgeon to operate in an ergonomically favorable position with more intuitive manipulation of the instruments. Commercially available robotic systems, however, are very bulky, expensive and do not provide any force feedback. The aim of our study was to develop a simple mechanical manipulator for MIS. When manipulating the handle of the device, the surgeon’s wrist and grasping movements are directly transmitted to the deflectable instrument tip in 7 DOFs. The manipulator consists of a parallelogram mechanism with steel wires. First phantom experience indicated that the system functions properly. The MIM provides some force feedback improving safety. A set of MIMs seems to be an economical and compact alternative for robotic systems.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Sriram Garudeswaran ◽  
Sohyung Cho ◽  
Ikechukwu Ohu ◽  
Ali K. Panahi

Recent technological progress offers the opportunity to significantly transform conventional open surgical procedures in ways that allow minimally invasive surgery (MIS) to be accomplished by specific operative instruments’ entry into the body through key-sized holes rather than large incisions. Although MIS offers an opportunity for less trauma and quicker recovery, thereby reducing length of hospital stay and attendant costs, the complex nature of this procedure makes it difficult to master, not least because of the limited work area and constricted degree of freedom. Accordingly, this research seeks to design a Teach and Playback device that can aid surgical training by key-framing and then reproducing surgical motions. The result is an inexpensive and portable Teach and Playback laparoscopic training device that can record a trainer’s surgical motions and then play them back for trainees. Indeed, such a device could provide a training platform for surgical residents generally and would also be susceptible of many other applications for other robot-assisted tasks that might require complex motion training and control.


2021 ◽  
Author(s):  
Guillaume Michel ◽  
Durgesh Haribhau Salunkhe ◽  
Philippe Bordure ◽  
Damien Chablat

Abstract In otolaryngologic surgery, endoscopy is increasingly used to provide a better view of hard-to-reach areas and to promote minimally invasive surgery. However, the need to manipulate the endoscope limits the surgeon's ability to operate with only one instrument at a time. Currently, several robotic systems are being developed, demonstrating the value of robotic assistance in microsurgery. The aim of this literature review is to present and classify current robotic systems that are used for otological and endonasal applications. For these solutions, an analysis of the functionalities in relation to the surgeon's needs will be carried out in order to produce a set of specifications for the creation of new robots.


Author(s):  
Weibang Bai ◽  
Qixin Cao ◽  
Pengfei Wang ◽  
Peng Chen ◽  
Chuntao Leng ◽  
...  

Purpose Robotic systems for laparoscopic minimally invasive surgery (MIS) always end up with highly sophisticated mechanisms and control schemes – making it a long and hard development process with a steep price. This paper aims to propose and realize a new, efficient and convenient strategy for building effective control systems for surgical and even other complex robotic systems. Design/methodology/approach A novel method that takes advantage of the modularization concept by integrating two middleware technologies (robot operating system and robotic technology middleware) into a common architecture based on the strengths of both was designed and developed. Findings Tests of the developed control system showed very low time-delay between the master and slave sides; good movement representation on the slave manipulator; and high positional and operational accuracy. Moreover, the new development strategy trial came with much higher efficiency and lower costs. Research limitations/implications This method results in a modularized and distributed control system that is amenable to collaboratively develop; convenient to modify and update; componentized and easy to extend; mutually independent among subsystems; and practicable to be running and communicating across multiple operating systems. However, experiments show that surgical training and updates of the robotic system are still required to achieve better proficiency for completing complex minimally invasive surgical operations with the proposed and developed system. Originality/value This research proposed and developed a novel modularization design method and a novel architecture for building a distributed teleoperation control system for laparoscopic MIS.


Author(s):  
Olatunji Mumini Omisore ◽  
Shipeng Han ◽  
Jing Xiong ◽  
Hui Li ◽  
Zheng Li ◽  
...  

Author(s):  
Deiva Ganesh A

<p>Micro robots for medical applications need to be compatible with human body, remotely controllable, smooth in movement, less painful to the patients and capable of performing the designated functions. In this paper, state of the art in the design, fabrication and control of micro robots are presented. First the benefits of micro robots in medical applications are listed out. Second, the predominantly used micro robot designs are discussed. Third, the various fabrication process used in micro robot construction are presented. Fourth, the different approaches used for its operation and control in micro robot technology are narrated. Next based on the review we have designed a swimming micro robot driven by external magnetic fields for minimally invasive surgery. The advantage of EMA is that it can generate a wireless driving force. Then, the locomotive mechanism of the micro robot using EMA is presented. Using the EMA system setup various experiments have been conducted. Finally, the performance of the swimming micro robot is evaluated.</p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong></strong></p> <p> </p>


Sign in / Sign up

Export Citation Format

Share Document