X-ray orientation determination of single crystals by means of the Ω-Scan Method

2004 ◽  
Vol 118 ◽  
pp. 37-42 ◽  
Author(s):  
H. Berger
2005 ◽  
Vol 38 (4) ◽  
pp. 678-684 ◽  
Author(s):  
Balder Ortner

A method for the X-ray determination of lattice-plane distances is given. Similar to Bond's method, it is based on the measurement of rocking curves, with some advantages and disadvantages compared with the former method. The new method is especially designed for single-crystal stress measurement. Its usefulness is demonstrated in two examples of lattice-constant and stress measurement.


IUCrData ◽  
2019 ◽  
Vol 4 (11) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Single crystals of rubidium tetrafluoridobromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-antiprismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598].


1963 ◽  
Vol 7 ◽  
pp. 107-116
Author(s):  
Y. A. Konnan

AbstractThe determination of the orientation of a single crystal by Laue X-ray photographs is dependent on the identification of the indices of the spots. At the present time, the determination of indices is done by various methods, none of which is entirely systematical. A method for establishing the indices of the spots which avoids a trial-and-error approach is described here. The method is graphical, uses a specially compiled table of erystallographic angles and is not dependent on the complexity of the structure of the crystal or its symmetry. An example of the cubic system is included. With more complex crystal structures the method becomes very laborious and the help of computer methods is suggested.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 340 ◽  
Author(s):  
Oswaldo Sánchez-Dena ◽  
Carlos J. Villagómez ◽  
César D. Fierro-Ruíz ◽  
Artemio S. Padilla-Robles ◽  
Rurik Farías ◽  
...  

Existent methods for determining the composition of lithium niobate single crystals are mainly based on their variations due to changes in their electronic structure, which accounts for the fact that most of these methods rely on experimental techniques using light as the probe. Nevertheless, these methods used for single crystals fail in accurately predicting the chemical composition of lithium niobate powders due to strong scattering effects and randomness. In this work, an innovative method for determining the chemical composition of lithium niobate powders, based mainly on the probing of secondary thermodynamic phases by X-ray diffraction analysis and structure refinement, is employed. Its validation is supported by the characterization of several samples synthesized by the standard and inexpensive method of mechanosynthesis. Furthermore, new linear equations are proposed to accurately describe and determine the chemical composition of this type of powdered material. The composition can now be determined by using any of four standard characterization techniques: X-Ray Diffraction (XRD), Raman Spectroscopy (RS), UV-vis Diffuse Reflectance (DR), and Differential Thermal Analysis (DTA). In the case of the existence of a previous equivalent description for single crystals, a brief analysis of the literature is made.


2000 ◽  
Vol 53 (9) ◽  
pp. 799 ◽  
Author(s):  
Ian M. Atkinson ◽  
David C. R. Hockless ◽  
Leonard F. Lindoy ◽  
Owen A. Matthews ◽  
George V. Meehan ◽  
...  

The synthesis and single-crystal X-ray structure determination of a new cage molecule containing four oxygen, two sulfur, and two nitrogen heteroatoms are described. The structure determination shows that a twist occurs about each (tribenzyl) nitrogen bridgehead so that an overall helical configuration within putative quasi-2 symmetry is generated; both nitrogens have their lone pairs orientatedexo. Single crystals of this compound are homochiral. Semiempirical MO calculations have been used to probe the topological rigidity of this system relative to the more symmetrical analogue incorporating six oxygen and two nitrogen heteroatoms reported previously. The introduction of the sulfur atoms appears to restrict the facile interconversion between enantiomers that was predicted for the N2O6-analogue mentioned above. The implications of the structure for the design of larger cages are discussed.


1961 ◽  
Vol 5 ◽  
pp. 142-152
Author(s):  
Frank L. Chan

AbstractSingle crystals of cadmium sulfide and zinc sulfide have been grown and studied intensively by the Solid State Physics group at the Aeronautical Research Laboratory. The physical phenomena such as reflection, transmission, ultraviolet-excited emission, and electrical resistivity have been observed and characterized on single crystals of these sulfides. Much interest concerning these phenomena has also been centered on single crystals containing both cadmium sulfide and zinc sulfide.For research purposes, mixed crystals as small as a few tenths of 1 mg or less, to 0.5 g of the mixed sulfides, are being prepared. Special chemical methods are required to determine these constituents in them quantitatively. At times, these chemical methods are not applicable, since these methods invariably consume the sample, and, as a result, other observations on the same crystals cannot be performed.Changes in lattice parameter in single crystals of mixed sulfides as compared to pure zinc sulfide or cadmium sulfide provide excellent means for the determination of the percentage of these sulfides. In the X-ray method, single crystals used for the determination of the lattice parameters remain intact. The equipment adopted, procedure used, and the data obtained are illustrated and discussed.In the present study, crystals of cadmium sulfide (greenockite), alpha-zinc sulfide (wurtzite) and solid solutions of these two sulfides having a hexagonal unit cell were used. Since the lattice parameter a0 is found to follow Vegard's law, single-crystal rotation photographs described in this paper were obtained by rotating crystals around the c axis; the lattice parameter was determined with high precision by scanning along the zero-layer line with a microphotometer.


Sign in / Sign up

Export Citation Format

Share Document