A TELESCOPE MOUNTED MOCK INTERFEROMETER FOR USE ON EXTENDED SOURCES

1967 ◽  
Vol 28 (C2) ◽  
pp. C2-144-C2-149 ◽  
Author(s):  
M. J. SELBY ◽  
L. W. THORPE
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ibtissame Khaoua ◽  
Guillaume Graciani ◽  
Andrey Kim ◽  
François Amblard

AbstractFor a wide range of purposes, one faces the challenge to detect light from extremely faint and spatially extended sources. In such cases, detector noises dominate over the photon noise of the source, and quantum detectors in photon counting mode are generally the best option. Here, we combine a statistical model with an in-depth analysis of detector noises and calibration experiments, and we show that visible light can be detected with an electron-multiplying charge-coupled devices (EM-CCD) with a signal-to-noise ratio (SNR) of 3 for fluxes less than $$30\,{\text{photon}}\,{\text{s}}^{ - 1} \,{\text{cm}}^{ - 2}$$ 30 photon s - 1 cm - 2 . For green photons, this corresponds to 12 aW $${\text{cm}}^{ - 2}$$ cm - 2 ≈ $$9{ } \times 10^{ - 11}$$ 9 × 10 - 11 lux, i.e. 15 orders of magnitude less than typical daylight. The strong nonlinearity of the SNR with the sampling time leads to a dynamic range of detection of 4 orders of magnitude. To detect possibly varying light fluxes, we operate in conditions of maximal detectivity $${\mathcal{D}}$$ D rather than maximal SNR. Given the quantum efficiency $$QE\left( \lambda \right)$$ Q E λ of the detector, we find $${ \mathcal{D}} = 0.015\,{\text{photon}}^{ - 1} \,{\text{s}}^{1/2} \,{\text{cm}}$$ D = 0.015 photon - 1 s 1 / 2 cm , and a non-negligible sensitivity to blackbody radiation for T > 50 °C. This work should help design highly sensitive luminescence detection methods and develop experiments to explore dynamic phenomena involving ultra-weak luminescence in biology, chemistry, and material sciences.


2019 ◽  
Vol 38 (6) ◽  
pp. 1-9 ◽  
Author(s):  
Zechen Zhang ◽  
Nikunj Raghuvanshi ◽  
John Snyder ◽  
Steve Marschner

1981 ◽  
Vol 58 (1-2) ◽  
pp. 53-58
Author(s):  
B. A. Bishara ◽  
Z. A. Mohsen
Keyword(s):  

2012 ◽  
Author(s):  
Daniel H. Pamplin ◽  
D. Scott Acton ◽  
J. Scott Knight

2021 ◽  
Author(s):  
Benedikt Hemmer ◽  
Christin Proß ◽  
Stanley P. Sander ◽  
Thomas J. Pongetti ◽  
Zhao-Cheng Zeng ◽  
...  

<div> <div>Precise knowledge of sources and sinks in the carbon cycle is desired to understand its sensitivity to climate change and to account and verify man-made emissions. In this context, extended sources like urban areas play an important role. While in-situ measurements of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) are highly accurate but localized, satellites measure column-integrated concentrations over an extended footprint. The CLARS-FTS [1, 2] stationed at the Mt. Wilson observatory looking downward into the Los Angeles basin has pioneered an innovative measurement technique that fills the sensitivity gap between in-situ and satellite measurements. The technique enables mapping the urban greenhouse gas concentration fields by collecting spectra of ground scattered sunlight and scanning through the region.</div> <div> </div> <div>Here, we report on progress developing a portable setup for a CLARS-FTS-like measurement geometry. The instrument is based on the EM27/SUN FTS with a modified pointing technique and a more sensitive detector. The retrieval algorithm is based on the RemoTeC software, previously employed for solar backscatter satellite measurements. We discuss first steps in terms of instrument performance and retrieval exercises. For the latter, we have carried out simulations on how the neglect of scattering by the retrieval affects the retrieved boundary layer concentrations of CO<sub>2</sub> and CH<sub>4</sub> for an ensemble of hypothetical scenes with variable complexity in aeorsol loadings and viewing geometry. We also report on a test to apply RemoTeC to a small set of CLARS-FTS spectra collected throughout the Los Angeles basin.</div> <div> </div> <div><em>References</em></div> <div>[1] Fu, D. et al., 2014: Near-infrared remote sensing of Los Angeles trace gas distributions from a mountaintop site, Atmos. Meas. Tech., 7, 713–729, https://doi.org/10.5194/amt-7-713-2014</div> [2] Wong, K. W. et al., 2015: Mapping CH4 : CO2 ratios in Los Angeles with CLARS-FTS from Mount Wilson, California, Atmos. Chem. Phys., 15, 241–252, https://doi.org/10.5194/acp-15-241-2015</div>


Sign in / Sign up

Export Citation Format

Share Document