Photometric stereo with gradated extended sources for recovery of specular surfaces

2010 ◽  
Vol 27 (5) ◽  
pp. 1127 ◽  
Author(s):  
G. McGunnigle
2016 ◽  
Vol 56 (1) ◽  
pp. 57-76 ◽  
Author(s):  
S. Tozza ◽  
R. Mecca ◽  
M. Duocastella ◽  
A. Del Bue

1967 ◽  
Vol 28 (C2) ◽  
pp. C2-144-C2-149 ◽  
Author(s):  
M. J. SELBY ◽  
L. W. THORPE
Keyword(s):  

2021 ◽  
Vol 147 ◽  
pp. 106749
Author(s):  
Long Ma ◽  
Yuzhe Liu ◽  
Jirui Liu ◽  
Shengwei Guo ◽  
Xin Pei ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christian Kapeller ◽  
Ernst Bodenstorfer

Abstract Battery technology is a key component in current electric vehicle applications and an important building block for upcoming smart grid technologies. The performance of batteries depends largely on quality control during their production process. Defects introduced in the production of electrodes can lead to degraded performance and, more importantly, to short circuits in final cells, which is highly safety-critical. In this paper, we propose an inspection system architecture that can detect defects, such as missing coating, agglomerates, and pinholes on coated electrodes. Our system is able to acquire valuable production quality control metrics, like surface roughness. By employing photometric stereo techniques, a shape from shading algorithm, our system surmounts difficulties that arise while optically inspecting the black to dark gray battery coating materials. We present in detail the acquisition concept of the proposed system architecture, and analyze its acquisition-, as well as, its surface reconstruction performance in experiments. We carry these out utilizing two different implementations that can operate at a production speed of up to 2000 mm/s at a resolution of 50 µm per pixel. In this work we aim to provide a system architecture that can provide a reliable contribution to ensuring optimal performance of produced battery cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ibtissame Khaoua ◽  
Guillaume Graciani ◽  
Andrey Kim ◽  
François Amblard

AbstractFor a wide range of purposes, one faces the challenge to detect light from extremely faint and spatially extended sources. In such cases, detector noises dominate over the photon noise of the source, and quantum detectors in photon counting mode are generally the best option. Here, we combine a statistical model with an in-depth analysis of detector noises and calibration experiments, and we show that visible light can be detected with an electron-multiplying charge-coupled devices (EM-CCD) with a signal-to-noise ratio (SNR) of 3 for fluxes less than $$30\,{\text{photon}}\,{\text{s}}^{ - 1} \,{\text{cm}}^{ - 2}$$ 30 photon s - 1 cm - 2 . For green photons, this corresponds to 12 aW $${\text{cm}}^{ - 2}$$ cm - 2 ≈ $$9{ } \times 10^{ - 11}$$ 9 × 10 - 11 lux, i.e. 15 orders of magnitude less than typical daylight. The strong nonlinearity of the SNR with the sampling time leads to a dynamic range of detection of 4 orders of magnitude. To detect possibly varying light fluxes, we operate in conditions of maximal detectivity $${\mathcal{D}}$$ D rather than maximal SNR. Given the quantum efficiency $$QE\left( \lambda \right)$$ Q E λ of the detector, we find $${ \mathcal{D}} = 0.015\,{\text{photon}}^{ - 1} \,{\text{s}}^{1/2} \,{\text{cm}}$$ D = 0.015 photon - 1 s 1 / 2 cm , and a non-negligible sensitivity to blackbody radiation for T > 50 °C. This work should help design highly sensitive luminescence detection methods and develop experiments to explore dynamic phenomena involving ultra-weak luminescence in biology, chemistry, and material sciences.


Sign in / Sign up

Export Citation Format

Share Document