CURRENT STATUS OF CALCULATIONS AND MEASUREMENTS OF ION STOPPING POWER IN ICF PLASMAS

1983 ◽  
Vol 44 (C8) ◽  
pp. C8-39-C8-66 ◽  
Author(s):  
T. A. Mehlhorn ◽  
J. M. Peek ◽  
E. J. McGuire ◽  
J. N. Olsen ◽  
F. C. Young
2020 ◽  
Vol 93 (1107) ◽  
pp. 20190590 ◽  
Author(s):  
Patrick Wohlfahrt ◽  
Christian Richter

Pre-treatment CT imaging is a topic of growing importance in particle therapy. Improvements in the accuracy of stopping-power prediction are demanded to allow for a dose conformality that is not inferior to state-of-the-art image-guided photon therapy. Although range uncertainty has been kept practically constant over the last decades, recent technological and methodological developments, like the clinical application of dual-energy CT, have been introduced or arise at least on the horizon to improve the accuracy and precision of range prediction. This review gives an overview of the current status, summarizes the innovations in dual-energy CT and its potential impact on the field as well as potential alternative technologies for stopping-power prediction.


1966 ◽  
Vol 25 ◽  
pp. 266-267
Author(s):  
R. L. Duncombe

An examination of some specialized lunar and planetary ephemerides has revealed inconsistencies in the adopted planetary masses, the presence of non-gravitational terms, and some outright numerical errors. They should be considered of temporary usefulness only, subject to subsequent amendment as required for the interpretation of observational data.


Author(s):  
Kin Lam

The energy of moving ions in solid is dependent on the electronic density as well as the atomic structural properties of the target material. These factors contribute to the observable effects in polycrystalline material using the scanning ion microscope. Here we outline a method to investigate the dependence of low velocity proton stopping on interatomic distances and orientations.The interaction of charged particles with atoms in the frame work of the Fermi gas model was proposed by Lindhard. For a system of atoms, the electronic Lindhard stopping power can be generalized to the formwhere the stopping power function is defined as


Author(s):  
Martin Peckerar ◽  
Anastasios Tousimis

Solid state x-ray sensing systems have been used for many years in conjunction with scanning and transmission electron microscopes. Such systems conveniently provide users with elemental area maps and quantitative chemical analyses of samples. Improvements on these tools are currently sought in the following areas: sensitivity at longer and shorter x-ray wavelengths and minimization of noise-broadening of spectral lines. In this paper, we review basic limitations and recent advances in each of these areas. Throughout the review, we emphasize the systems nature of the problem. That is. limitations exist not only in the sensor elements but also in the preamplifier/amplifier chain and in the interfaces between these components.Solid state x-ray sensors usually function by way of incident photons creating electron-hole pairs in semiconductor material. This radiation-produced mobile charge is swept into external circuitry by electric fields in the semiconductor bulk.


Author(s):  
David C. Joy ◽  
Suichu Luo ◽  
John R. Dunlap ◽  
Dick Williams ◽  
Siqi Cao

In Physics, Chemistry, Materials Science, Biology and Medicine, it is very important to have accurate information about the stopping power of various media for electrons, that is the average energy loss per unit pathlength due to inelastic Coulomb collisions with atomic electrons of the specimen along their trajectories. Techniques such as photoemission spectroscopy, Auger electron spectroscopy, and electron energy loss spectroscopy have been used in the measurements of electron-solid interaction. In this paper we present a comprehensive technique which combines experimental and theoretical work to determine the electron stopping power for various materials by electron energy loss spectroscopy (EELS ). As an example, we measured stopping power for Si, C, and their compound SiC. The method, results and discussion are described briefly as below.The stopping power calculation is based on the modified Bethe formula at low energy:where Neff and Ieff are the effective values of the mean ionization potential, and the number of electrons participating in the process respectively. Neff and Ieff can be obtained from the sum rule relations as we discussed before3 using the energy loss function Im(−1/ε).


2021 ◽  
Author(s):  
Yuanhong Ma ◽  
Shao-Jie Lou ◽  
Zhaomin Hou

This review article provides a comprehensive overview to recognise the current status of electron-deficient boron-based catalysis in C–H functionalisations.


Sign in / Sign up

Export Citation Format

Share Document