CHEMISORPTION OF CO AND METHANATION ON Rh SURFACES AT LOW TEMPERATURE AND LOW PRESSURE, AN ATOM-PROBE FIM STUDY

1987 ◽  
Vol 48 (C6) ◽  
pp. C6-487-C6-492
Author(s):  
W. Liu ◽  
D. M. Ren ◽  
C. L. Bao ◽  
T. T. Tsong
Author(s):  
Gert Ehrlich

The field ion microscope, devised by Erwin Muller in the 1950's, was the first instrument to depict the structure of surfaces in atomic detail. An FIM image of a (111) plane of tungsten (Fig.l) is typical of what can be done by this microscope: for this small plane, every atom, at a separation of 4.48Å from its neighbors in the plane, is revealed. The image of the plane is highly enlarged, as it is projected on a phosphor screen with a radius of curvature more than a million times that of the sample. Müller achieved the resolution necessary to reveal individual atoms by imaging with ions, accommodated to the object at a low temperature. The ions are created at the sample surface by ionization of an inert image gas (usually helium), present at a low pressure (< 1 mTorr). at fields on the order of 4V/Å.


Author(s):  
M.G. Burke ◽  
M.K. Miller

Interpretation of fine-scale microstructures containing high volume fractions of second phase is complex. In particular, microstructures developed through decomposition within low temperature miscibility gaps may be extremely fine. This paper compares the morphological interpretations of such complex microstructures by the high-resolution techniques of TEM and atom probe field-ion microscopy (APFIM).The Fe-25 at% Be alloy selected for this study was aged within the low temperature miscibility gap to form a <100> aligned two-phase microstructure. This triaxially modulated microstructure is composed of an Fe-rich ferrite phase and a B2-ordered Be-enriched phase. The microstructural characterization through conventional bright-field TEM is inadequate because of the many contributions to image contrast. The ordering reaction which accompanies spinodal decomposition in this alloy permits simplification of the image by the use of the centered dark field technique to image just one phase. A CDF image formed with a B2 superlattice reflection is shown in fig. 1. In this CDF micrograph, the the B2-ordered Be-enriched phase appears as bright regions in the darkly-imaging ferrite. By examining the specimen in a [001] orientation, the <100> nature of the modulations is evident.


2001 ◽  
Vol 231 (1-2) ◽  
pp. 242-247 ◽  
Author(s):  
K. Shalini ◽  
Anil U. Mane ◽  
S.A. Shivashankar ◽  
M. Rajeswari ◽  
S. Choopun

Author(s):  
C Hemanth Kumar ◽  
Asisa Kumar Pnaigrahi ◽  
Nirupam Paul ◽  
Satish Bonam ◽  
Siva Rama Krishna Vanjari ◽  
...  
Keyword(s):  

1998 ◽  
Vol 10 (2) ◽  
pp. 197-199 ◽  
Author(s):  
S.A. Feld ◽  
J.P. Loehr ◽  
R.E. Sherriff ◽  
J. Wiemeri ◽  
R. Kaspi

Sign in / Sign up

Export Citation Format

Share Document