The outgoing time-harmonic electromagnetic wave in a half-space with non-absorbing impedance boundary condition

2019 ◽  
Vol 53 (1) ◽  
pp. 325-350
Author(s):  
Sergio Rojas ◽  
Ignacio Muga ◽  
Carlos Jerez-Hanckes

We show existence and uniqueness of the outgoing solution for the Maxwell problem with an impedance boundary condition of Leontovitch type in a half-space. Due to the presence of surface waves guided by an infinite surface, the established radiation condition differs from the classical one when approaching the boundary of the half-space. This specific radiation pattern is derived from an accurate asymptotic analysis of the Green’s dyad associated to this problem.

1966 ◽  
Vol 62 (4) ◽  
pp. 811-827 ◽  
Author(s):  
R. D. Gregory

AbstractA time harmonic Rayleigh wave, propagating in an elastic half-space y ≥ 0, is incident on a certain impedance boundary condition on y = 0, x > 0. The resulting field consists of a reflected surface wave, scattered body waves, and a transmitted surface wave appropriate to the new boundary conditions. The elastic potentials are found exactly by Fourier transform and the Wiener-Hopf technique in the case of a slightly dissipative medium. The ψ potential is found to have a logarithmic singularity at (0,0), but the φ potential though singular is bounded there. Analytic forms are given for the amplitudes of the reflected and transmitted surface waves, and for the scattered field. The reflexion coefficient is found to have a simple form for small impedances. A uniqueness theorem, based on energy considerations, is proved.


2016 ◽  
Vol 810 ◽  
pp. 489-534 ◽  
Author(s):  
Doran Khamis ◽  
Edward James Brambley

The effect of viscosity and thermal conduction on the acoustics in a shear layer above an impedance wall is investigated numerically and asymptotically by solving the linearised compressible Navier–Stokes equations (LNSE). It is found that viscothermal effects can be as important as shear, and therefore including shear while neglecting viscothermal effects by solving the linearised Euler equations (LEE) is questionable. In particular, the damping rate of upstream-propagating waves is found to be under-predicted by the LEE, and dramatically so in certain instances. The effects of viscosity on stability are also found to be important. Short wavelength disturbances are stabilised by viscosity, greatly altering the characteristic wavelength and maximum growth rate of instability. For the parameters considered here (chosen to be typical of aeroacoustic situations), the Reynolds number below which the flow stabilises ranges from$10^{5}$to$10^{7}$. By assuming a thin but non-zero-thickness boundary layer, asymptotic analysis leads to a system of boundary layer governing equations for the acoustics. This system may be solved numerically to produce an effective impedance boundary condition, applicable at the wall of a uniform inviscid flow, that accounts for both the shear and viscosity within the boundary layer. An alternative asymptotic analysis in the high-frequency limit yields a different set of boundary layer equations, which are solved to yield analytic solutions. The acoustic mode shapes and axial wavenumbers from both asymptotic analyses compare well with numerical solutions of the full LNSE. A closed-form effective impedance boundary condition is derived from the high-frequency asymptotics, suitable for application in frequency domain numerical simulations. Finally, surface waves are considered, and it is shown that a viscous flow over an impedance lining supports a greater number of surface wave modes than an inviscid flow.


Sign in / Sign up

Export Citation Format

Share Document