scholarly journals A Novel Image Cryptosystem Based on S-AES and Chaotic Map

2015 ◽  
Vol 31 ◽  
pp. 15002
Author(s):  
Lan Bai
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1392
Author(s):  
Ahmed A. Abd El-Latif ◽  
Bassem Abd-El-Atty ◽  
Akram Belazi ◽  
Abdullah M. Iliyasu

Chaotic systems are vital in designing contemporary cryptographic systems. This study proposes an innovative method for constructing an effective substitution box using a 3-dimensional chaotic map. Moreover, bouyed by the efficiency of the proposed chaos-based substitution boxes’ effectiveness, we introduce a new chaos-based image cryptosystem that combines the adeptness of Gray codes, a non-linear and sensitive hyper-chaotic system, and the proposed S-box. The generated secret key emanating from the cryptosystem is correlated to the input image to produce a unique key for each image. Extensive experimental outcomes demonstrate the utility, effectiveness, and high performance of the resulting cryptosystem.


2018 ◽  
Vol 27 (1) ◽  
pp. 213-236
Author(s):  
Ayman M. Hemdan ◽  
Osama S. Faragalla ◽  
Osama Elshakankiry ◽  
Ahmed Elmhalaway

Author(s):  
Mayada T. Wazi ◽  
Dalia S. Ali ◽  
Nadia M. G. Al-Saidi ◽  
Nawras A. Alawn

This work focused on introducing a new two-dimensional (2D) chaotic system. It is combined of some existing maps, the logistic, iterative chaotic map with infinite collapse, and Henon maps; we called it 2D-LCHM. The assessment of the actual performance of 2D-LCHM presents its sensitivity to a tiny change in the initial condition. Besides, its dynamics behavior is very complicated. It also has hyperchaotic properties and good ergodicity. The proposed system is occupied with designing a new image encryption system. Changing the image pixels’ locations is the primary step in the encryption process. The original image is splitting into four blocks to create four different keys based on 2D-LCHM; this reduces the computation time and increases the complexity. To obtain the encryption image, we have to repeat the partitioning process several times for each block. The encryption image’s efficiency is shown through some performance analysis such as; image histogram, the number of pixels changes rate (NPCR), the unified average changing intensity (UACI), pixels correlation, and entropy. The proposed system is compared with some efficient encryption algorithms in terms of chaocity attributes and image performance; the analysis result showed consistent improvement.


2017 ◽  
Vol 77 (1) ◽  
pp. 1285-1298 ◽  
Author(s):  
Zhuhong Shao ◽  
Yuanyuan Shang ◽  
Xiaoyan Fu ◽  
Huimei Yuan ◽  
Huazhong Shu

2014 ◽  
Vol 2014 (1) ◽  
pp. 34-42 ◽  
Author(s):  
N. S. Raghava ◽  
◽  
Ashish Kumar ◽  
Aishwarya Deep ◽  
Abhilasha Chahal ◽  
...  

2020 ◽  
Vol 38 (3B) ◽  
pp. 98-103
Author(s):  
Atyaf S. Hamad ◽  
Alaa K. Farhan

This research presents a method of image encryption that has been designed based on the algorithm of complete shuffling, transformation of substitution box, and predicated image crypto-system. This proposed algorithm presents extra confusion in the first phase because of including an S-box based on using substitution by AES algorithm in encryption and its inverse in Decryption. In the second phase, shifting and rotation were used based on secrete key in each channel depending on the result from the chaotic map, 2D logistic map and the output was processed and used for the encryption algorithm. It is known from earlier studies that simple encryption of images based on the scheme of shuffling is insecure in the face of chosen cipher text attacks. Later, an extended algorithm has been projected. This algorithm performs well against chosen cipher text attacks. In addition, the proposed approach was analyzed for NPCR, UACI (Unified Average Changing Intensity), and Entropy analysis for determining its strength.


Chaotic systems behavior attracts many researchers in the field of image encryption. The major advantage of using chaos as the basis for developing a crypto-system is due to its sensitivity to initial conditions and parameter tunning as well as the random-like behavior which resembles the main ingredients of a good cipher namely the confusion and diffusion properties. In this article, we present a new scheme based on the synchronization of dual chaotic systems namely Lorenz and Chen chaotic systems and prove that those chaotic maps can be completely synchronized with other under suitable conditions and specific parameters that make a new addition to the chaotic based encryption systems. This addition provides a master-slave configuration that is utilized to construct the proposed dual synchronized chaos-based cipher scheme. The common security analyses are performed to validate the effectiveness of the proposed scheme. Based on all experiments and analyses, we can conclude that this scheme is secure, efficient, robust, reliable, and can be directly applied successfully for many practical security applications in insecure network channels such as the Internet


Sign in / Sign up

Export Citation Format

Share Document