scholarly journals Finite Element Analysis of Lateral Torsional Buckling Behaviour of Tapered Steel Section with Perforation

2016 ◽  
Vol 47 ◽  
pp. 02020 ◽  
Author(s):  
Nurfarhah Naaim ◽  
Fatimah De’nan ◽  
Choong Kok Keong ◽  
Faiz Azar
2010 ◽  
Vol 16 (2) ◽  
pp. 197-202 ◽  
Author(s):  
Kuldeep Virdi ◽  
Walid Azzi

Lateral torsional buckling is a key factor in the design of steel girders. Stability can be enhanced by cross‐bracing, reducing the effective length and thus increasing the ultimate capacity. U‐frames are an option often used to brace the girders, when designing through type of bridges and where overhead bracing is not practical. This paper investigates the effect of the U‐frame spacing on the stability of the parallel girders. Eigenvalue buckling analysis was undertaken with four different spacings of the U‐frames. Results were extracted from finite element analysis, interpreted and conclusions drawn. Santrauka Projektuojant plienines sijas šoninis sukamasis klupumas yra svarbiausias veiksnys. Pastovumas gali būti padidintas skersiniais ryšiais, mažinančiais veikiamaji ilgi ir padidinančiais ribine galia. U‐formiai remai yra dažna priemone sijoms išramstyti, kai projektuojami tiltai, kuriu laikančiosios konstrukcijos yra virš pakloto, o viršutiniai ryšiai yra nepraktiški. Šiame straipsnyje nagrinejamas U‐formiu remu tarpatramio poveikis lygiagrečiuju siju pastovumui. Tikravertis klupumo skaičiavimas buvo atliktas esant keturiems skirtingiems U‐formiu remu tarpatramiams. Aptarti rezultatai, gauti apskaičiavus baigtinius elementus, padarytos išvados.


2015 ◽  
Vol 125 ◽  
pp. 1129-1134
Author(s):  
Fatimah De’nan ◽  
Hazwani Hasan ◽  
Duaa Khaled Nassir ◽  
Mohd Hanim Osman ◽  
Sariffuddin Saad

Author(s):  
Akshay Dudam

Abstract: Replacing composite bodies by the conventional metallic bodies have many advantages because of high specific strength and high specific stiffness of the composite materials. As compared to the conventional drive shafts, Composite drive shafts have the potential of lighter and longer life with high rotational speed. Nowadays drive shafts are used in two pieces. However, the main advantage of the current design is that only one piece of composite drive shaft is possible that fulfils all the drive shaft requirements. The torsional strength, torsional buckling and bending natural frequency are the main basic requirements considered here. This work is all about the replacing the conventional two-piece steel drive shaft with a one-piece carbon/epoxy. Design of composite drive shaft Classical Lamination Theory is used for the design of composite drive shaft. Finite element analysis (FEA) was used to design composite drive shafts incorporating carbon within an epoxy matrix. From experimental results, it was found that the developed one-piece automotive composite drive shaft had 64% mass reduction, 74% increase in torque capability compared with a conventional two-piece steel drive shaft. It also had 6380 rpm of natural frequency which was higher than the design specification of 3050 rpm. Index Terms: Bending frequency, Composite Materials, Drive shaft, Finite Element Analysis (FEA), Power transmission, Torsion, Torsional buckling.


2018 ◽  
Vol 22 (3) ◽  
pp. 641-655 ◽  
Author(s):  
MS Deepak ◽  
VM Shanthi

In this article, a parametric study on the lateral-torsional buckling performance of thin-walled cold-formed steel Hybrid Double-I-Box Beams through numerical analyses has been presented. These built-up beams have distinctive cross-section geometry; the presence of more section modulus at the flanges provides high resistance to flexural bending and the closed-box portion offers high stiffness to resist torsion and lateral buckling. Therefore, these beams can be used for longer spans. The nonlinear finite element analysis was performed using ABAQUS software. All the beams were modelled as ideal finite element models adopting simply supported boundary conditions and loads were applied as end moments. To acquire a large number of data, three varying parameters were considered namely, hybrid parameter ratio, that is, yield strength of flange steel to web steel (1.0, 1.3, 1.5 and 1.7); ratio of breadth to depth of the beam (4/6, 5/6, 6/6 and 7/6); and length of the beam (1.0, 2.5, 5.0, 10, 15, 20, 30, 40, 50 and 60 in m). The thickness of both the flanges and the webs were 2.5 mm. All these parameters alter the overall slenderness of the members. It is shown that at larger spans, Hybrid Double-I-Box Beams experience lateral buckling. The results obtained from the numerical studies were plotted on nondimensional moment versus nondimensional slenderness graph. These results were compared with the predictions using effective width method design rules specified in Euro codes EN 3-1-3 and buckling curve-d of EN 3-1-1, which was originally adopted lateral-torsional buckling capacities of hot-rolled steel ‘I’ sections, and the adequacy is checked. It was found that Hybrid Double-I-Box Beams has higher lateral-torsional buckling capacity than common ‘I’ or box sections. Hence, a new simplified design equation was proposed for determining lateral-torsional buckling capacity of Hybrid Double-I-Box Beams.


Sign in / Sign up

Export Citation Format

Share Document