Finite Element Analysis of Partially Encased Composite Columns with Equivalent Steel Section

Author(s):  
M. Begum ◽  
D. Ghosh
Author(s):  
Guochang Li ◽  
Zhichang Zhan ◽  
Zhijian Yang ◽  
Yu Yang

The concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load were investigated by the finite element analysis software ABAQUS. The working mechanism of the composite columns which is under bi-axial eccentric load are investigated by using the stress distribution diagram of steel tube concrete and the I-shaped CFRP profiles. In this paper, the main parameters; eccentric ratio, steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate of the specimens were investigated to know the mechanical behavior of them. The interaction between the steel tube and the concrete interface at different characteristic points of the composite columns were analyzed. The results showed that the ultimate bearing capacity of the concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load decrease with the increase of eccentric ratio, the ultimate bearing capacity of the composite columns increase with the increase of steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate. The contact pressure between the steel tube and the concrete decreased from the corner zone to the flat zone, and the contact pressure decreased from the mid-height cross section to other sections.


2012 ◽  
Vol 193-194 ◽  
pp. 1461-1464
Author(s):  
Bai Shou Li ◽  
Ai Hua Jin

Based on the characteristics of the special-shaped concrete-filled steel tubes and consideration of material nonlinearity of constitutive relation, stimulation of 6 T-shaped thin-walled ribbed and un-ribbed concrete-filled steel tube short columns is implemented, as well as comparable analysis of stress, strain, displacement and bearing capacity, through the finite element analysis software ANSYS. The result indicates that the rib can effectively improve the ductility, delaying the buckling occurs, which enhances the core concrete confinement effect, so as the stimulated ultimate bearing capacity which is greater than nominal ultimate bearing capacity.


2015 ◽  
Vol 125 ◽  
pp. 1129-1134
Author(s):  
Fatimah De’nan ◽  
Hazwani Hasan ◽  
Duaa Khaled Nassir ◽  
Mohd Hanim Osman ◽  
Sariffuddin Saad

2011 ◽  
Vol 255-260 ◽  
pp. 619-623
Author(s):  
Yao Zeng ◽  
Chong Wu

Two different specimens of hollow composite columns with perforated ribs, one is the column with double steel skin and the other is with single steel skin, were designed for imposing axial compression test. The tests indicated that both of the columns have a good bearing capacity and the column with double steel skin has a comparatively better bearing capacity than the one with single steel skin. Then comparisons between tests and finite element analysis (FEA) were preceded, which showed that not only the load-displacement relationship of the columns, but also a reasonable failure mode can be simulated by the finite element analysis.


2011 ◽  
Vol 255-260 ◽  
pp. 45-48 ◽  
Author(s):  
Ya Feng Xu ◽  
Xin Zhao ◽  
Yi Fu

Based on experimental research, the bearing performance of the new column (steel tube-reinforced concrete composite columns combination strengthened with angle steel and CFRP) has been studied in detail by finite element method. A finite element model is established based on a series of assumption. The load-displacement curves are obtained. The influence of steel ratio and thickness of CFRP layers to the bearing capacity is analyzed too. The result shows that both the steel ratio and the thickness of CFRP layers have great contribution to the axial load capacity. The finite element analysis results and theoretical analysis which are in good agreement show that simulation results are generally right.


Author(s):  
Jat Yuen Richard Liew ◽  
Binglin Lai ◽  
Shan Li

Concrete encased steel composite columns have been widely used in high-rise buildings and top-down constructions owning to excellent load-carrying capacity and fire resistance. However, double symmetric composite section is rarely achieved due to the off-center eccentricity of steel kingpost, which is a common problem in top-down constructions. EN1994-1-1 (EC4) simplified method does not provide any explicit provisions for this kind of irregular composite columns, and many designers address this issue by reducing it into a symmetrical cross-section for ease of simple calculation. This paper presents a general method based on nonlinear finite element modelling software ABAQUS to analyze the ultimate strength behavior of concrete-encased composite columns with asymmetrically placed steel section. The accuracy of the FE model is verified against existing test results.   Parametric study is performed to further investigate the influence of steel section eccentricity on ultimate strength of stub columns under different loading conditions. A simplified method based on modification of EC4 design approach is developed to construct the moment-axial force interaction diagram. Accuracy of the proposed method is assessed by comparing the analytically predicted results with the numerical results. It is found that the proposed method can be adopted as a useful tool to predict the cross-section resistance of non-symmetrical concrete-encased steel composite columns. 


Sign in / Sign up

Export Citation Format

Share Document