scholarly journals The Rigid-flexible Coupling Dynamics Analysis of the Powder Filling Quantity Control Mechanism Based on the ADAMS

2017 ◽  
Vol 100 ◽  
pp. 03009
Author(s):  
Guihe Wang ◽  
Liu Ying ◽  
Na Cui ◽  
Yiqi Wang ◽  
Yijing Zhang
2010 ◽  
Vol 44-47 ◽  
pp. 1823-1827
Author(s):  
Li Sui ◽  
Geng Chen Shi ◽  
Ping Song ◽  
Wei Song

As a device for time-delay, clock mechanism is widely used in fuze safety and arming device, whose core component is the runaway escapement. With the development of artillery systems, the dynamic environment during the projectile becomes more and more complicated. Recently, some shots misfire or premature explode during shooting process because runaway escapements’ miswork. This paper utilizes gear system’s research results applied in other fields, discusses clock mechanism’s dynamics problem, and uses ADAMS to analyze runaway escapement’s rigid-flexible coupling model. From comparing the simulation results of multi-rigid model and rigid-flexible coupling model, we find that elastic deformation will affect runaway escapement’s movement, even can cause the whole device to work abnormally.


2011 ◽  
Vol 199-200 ◽  
pp. 243-250 ◽  
Author(s):  
Yue Chen Duan ◽  
Ding Guo Zhang

The rigid-flexible coupling dynamics of a radially rotating flexible beam with impact is investigated in this paper. The transversal deformation and nonlinear coupled deformation, which means the longitudinal shortening caused by transversal deformation, is considered here. The impact force is calculated based on Hertz contact theory and nonlinear damping theory. By introducing the concept of impact potential energy, the system’s rigid-flexible coupling dynamic equations with impact is obtained by using Lagrange equation. The dynamic simulation is given to validate the method presented here, and get some dynamic response, such as impact force and flexible deformation.


2017 ◽  
Vol 19 (8) ◽  
pp. 5668-5678
Author(s):  
Chiyu Hao ◽  
Guangbin Feng ◽  
Huagang Sun ◽  
Haiping Li

2020 ◽  
pp. 1-15
Author(s):  
Xin Li ◽  
Ce Guo ◽  
Yaopeng Ma ◽  
Yu Zheng

Abstract The bamboo weevil, Cyrtotrachelus buqueti, has excellent flight ability and strong environmental adaptability. When it flies, its fore wings and hind wings are unfolded, whereas when it crawls, its fore wings are closed, and its flexible hind wings are regularly folded under the fore wings. In this paper, the hind wing folding/unfolding pattern of C. buqueti is analyzed and a new bionic foldable wing with rigid–flexible coupling consisting of a link mechanism and a wing membrane is constructed. The movement of the link at the wing base mimics the contraction of a muscle in the thorax that triggers scissor-like motion and the deployment of the veins. Elastic hinges are used to mimic the rotational motion of the wing base and the vein joints. The static/dynamic characteristics of bionic foldable wings are further analyzed, and the LS-DYNA software is used to investigate rigid–flexible coupling dynamics. The elastic deformation of the wing membrane, kinematic characteristics of the linkage mechanism, and modes of the whole system are calculated. Static analysis of the structure reveals that the foldable wing has excellent stiffness characteristics and load-bearing capacity. The bionic foldable wing is constructed using 3D printing technology, and its folding and unfolding performance is tested. Evaluation of its performance shows that the bionic wing has a large fold ratio and can achieve stable folding and unfolding motions. A slightly tighter assembly between the pin and the hinge hole ensures that the wing does not fold back during flapping.


2014 ◽  
Vol 971-973 ◽  
pp. 1261-1265
Author(s):  
Yu Jun Cao ◽  
Nai Hui Yu ◽  
Zheng Yang ◽  
Jian Zhong Shang

Anti-backlash gear can improve the static transmission precision of system. Besides, the dynamic characteristics of anti-backlash gear system have a significant effect on the performance of overall mechanism, and the torsion spring preload of anti-backlash gear is an important factor to affect the dynamic characteristic. In order to study dynamic characteristics of the anti-backlash gear, a rigid-flexible coupling model of single-stage anti-backlash system was established based on ADAMS / Flex, and the simulation accuracy was compared with the pure rigid model. The effect of the torsion spring preload on frequency response of the anti-backlash system was studied by virtual sweep experiments.


Sign in / Sign up

Export Citation Format

Share Document