scholarly journals Brownfield management opportunities to reduce the back pressure effects on the gas wells

2017 ◽  
Vol 121 ◽  
pp. 09008
Author(s):  
Dan-Paul Stefanescu ◽  
Diana-Andreea Lupu
Author(s):  
Xiaolei Liu ◽  
Akkharachai Limpasurat ◽  
Gioia Falcone ◽  
Catalin Teodoriu

When developing a transient numerical reservoir simulator, it is important to consider the back pressure effects that waves propagating from one end of the porous medium will have on the temporal distribution of pore fluid pressure within the medium itself. Such waves can be triggered by changing boundary conditions at the interface between reservoir and wellbore. An example is given by the transient reservoir response following pressure fluctuations at the wellbore boundary for gas wells suffering from liquid loading. Laboratory experiments were performed using a modified Hassler cell to mimic the effect of varying downhole pressure on gas flow in the near-wellbore region of a reservoir. Gauges were attached along a sandstone core to monitor the pressure profile. The results of the experiments are shown in this paper. A numerical code for modelling transient flow in the near-wellbore region was run to mimic the experiments. The comparisons of simulations and laboratory test results are presented here, for the initial and final steady-state flowing conditions, and where the inlet pressure was maintained constant while initiating a transient pressure build up at the core outlet. The concept of the U-shaped pressure profile along the near-wellbore region of a reservoir under transient flow conditions, originally proposed by Zhang et al. [1], was experimentally and numerically reproduced for single-phase gas flow. This is due to a combination of inertia and compressibility effects, leading to the reservoir response not being instantaneous. The results suggest that, in two phase gas-liquid conditions, liquid re-injection could occur during liquid loading in gas wells. From the experimental results, the U-shaped curves were more obvious and of longer duration in the case of greater outlet pressure. The transition from the initial to the final steady state condition occurred rapidly in all the cases shown here, with the U-shaped pressure profile appearing only over a relatively short time (at the small scale and low pressures tested in this study).


Author(s):  
Fouad A. Solomon ◽  
Gioia Falcone ◽  
Catalin Teodoriu

Liquid loading in gas wells is a phenomenon where the liquid content of the well is sufficient to create a back pressure (usually dominated by gravitational pressure changes) which restricts, and in some cases even stops, the flow of gas from the reservoir. Liquid loading is an all too common problem in mature gas fields around the world. It is estimated that in the U.S.A. alone, at least 90% of the producing gas wells are operating in liquid loading regime. The phenomenon is more detrimental in tight wells than in prolific wells and it poses a serious problem in subsea tie-backs, where back pressure effects through the risers and the flowlines may have an important role. Such is the importance of liquid loading; the oil and gas industry has devoted a lot of attention to the alleviation of the problem using various measures. However, the fundamental understanding of the associated phenomena is still surprisingly weak. This applies not only to the flows in the wells, but also to how these flows interact with those in the reservoir. It is this latter dynamic interaction that has received the least attention by the industry. Reliable predictive models to link the well dynamics with the intermittent response of a reservoir, that is typical of liquid loading in gas wells, remain unavailable. This paper introduces the complexity of liquid loading and critically reviews recent attempts to model liquid loading and the dynamic interactions between reservoir and wellbore. The paper then illustrates the need for a better understanding of the transient flow phenomena taking place in the near-wellbore region of the reservoir. This includes re-injection of the heavier phase, a phenomenon that has yet to be proven by fluid mechanics.


10.2118/770-g ◽  
1957 ◽  
Vol 210 (01) ◽  
pp. 302-309 ◽  
Author(s):  
M.R. Tek ◽  
M.L. Grove ◽  
F.H. Poettmann

2022 ◽  
Author(s):  
Craig A. Nordeen ◽  
Douglas A. Schwer

1967 ◽  
Vol 7 (02) ◽  
pp. 113-124 ◽  
Author(s):  
M. Gondouin ◽  
R. Iffly ◽  
J. Husson

Abstract A systematic variation of well deliverability, as reflected from isochronal back-pressure tests performed at regular intervals, has been observed in some gas condensate wells producing at high rates. The same effects have been obtained using a numerical model of gas and condensate flow which takes into account secondary gasoline deposited in the pore space as a result of pressure reduction, and nondarcy flow of gas in the vicinity of the wells. Matching calculated values with previous test results bas been possible, and future predictions have been obtained. An application of this method to the Hassi Er R'Mel gas-condensate field in Algeria is tentatively shown. Introduction Flow capacity of gas wells is generally derived from an analysis of back-pressure tests. The empirical equation q = C(Delta p)n used by Rawlins and Schellhardt can be derived rigorously assuming that steady-state radial flow of a dry gas of constant viscosity and compressibility is established during each flow period of the well tests. Furthermore, when Darcy's law applies in the entire flow region, the theory predicts that the exponent n is equal to 1. In low-permeability reservoirs, it was soon discovered that the time required to reach a stabilized flow often exceeded the duration of the flow periods normally available for testing wells. Consequently, transient gas flow had to be considered instead of the steady-state assumption previously used. This led to the isochronal testing procedure established by Cullender which has largely replaced conventional back-pressure testing. For dry gas fields, this method yields definite values of C and n equivalent to those of the empirical equation. These values should remain constant for each well as long as the permeability of the formation and the characteristics of the gas (viscosity and compressibility) do not change appreciably. This is the case when reservoir pressure remains close to the original value and when the formation near the wellbore remains free of plugging. Under those conditions, stabilized flow potential curves of gas wells can be established from a single sequence of isochronal flow and shut-in periods. An analysis of a pressure build-up following a longer production period provides additional data on the transmissivity (kh/mu) of the reservoir, and eventually on the drainage radius rd of the well, which can be related to the value of C so that future performance of the well can be predicted using the concepts developed by A. Houpeurt. At high How rates, Darcy's law no longer applies in the vicinity of the wellbore, and inertial effects in the high velocity gas flow introduce additional pressure drops. As a consequence, exponent n of the back-pressure tests becomes smaller than 1, and a slight curvature of the log-log plot of Delta p vs q can be predicted When going from very low to high rates of flow (Elenbaas and Katz). The effects of variations of viscosity and compressibility with pressure on the radial flow of dry gas in an infinite reservoir were taken into account by Jenkins and Aronofsky. Numerical solutions of the transient flow of an ideal gas in finite radial reservoirs were presented by Bruce, Peaceman, Rachford and Rice. In the case of gas condensate wells however the presence of gasoline in the pore space as soon as reservoir pressure is reduced below the dewpoint pressure further complicates the interpretation of flow tests so that the prediction of stabilized well performance becomes very difficult. Field observation shows that both C and n derived from isochronal tests vary in time, even when reservoir pressure has not changed appreciably. Such a variation cannot be attributed to any change of the gas characteristics, and must result from the effect of a gasoline saturation on the gas flow. SPEJ P. 113ˆ


2012 ◽  
Vol 116 (49) ◽  
pp. 25715-25720 ◽  
Author(s):  
Yoonyoung Kim ◽  
Son-Jong Hwang ◽  
Young-Su Lee ◽  
Jin-Yoo Suh ◽  
Heung Nam Han ◽  
...  

Author(s):  
В.С. Кузнецов ◽  
◽  
А.С. Шабловский ◽  
В.В. Яроц ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document