scholarly journals Influence of relative density on the cyclic shear strength of sands

2018 ◽  
Vol 149 ◽  
pp. 02034
Author(s):  
A. Arab ◽  
Marwan Sadek ◽  
I. SHAHROUR
Author(s):  
Woo-Tae KIM ◽  
Masayuki HYODO ◽  
Yukio NAKATA ◽  
Norimasa YOSHIMOTO ◽  
Shohei NODA

2018 ◽  
Vol 149 ◽  
pp. 02034 ◽  
Author(s):  
A. Arab ◽  
Marwan Sadek ◽  
I. SHAHROUR

This paper presents a laboratory study of the influence of relative density on the liquefaction potential of a soil. The study is based on undrained triaxial tests that were performed on samples with relative density Id = 0.15, 0.5 and 0.65. The article is composed of three parts. First, we present the materials and characteristics of the studied sands. the second part deals with the procedure and the device used. The third part studies the influence of the relative density on the liquefaction potential of the three sands (Hostun Rf, Chlef and Rass). This study also makes it possible to explore the influence of granulometry on the liquefaction potential. The results of the tests show that concordant results have been obtained which clearly show that the increase of the relative density leads to a significant improvement in the resistance to liquefaction of the sands. This effect is very significant when the initial relative density Id = 0.50 to Id = 0.65.


2021 ◽  
Vol 13 (23) ◽  
pp. 13224
Author(s):  
Hyeong-Gook Kim ◽  
Yong-Jun Lee ◽  
Kil-Hee Kim

This study presents a strengthening method for reinforced concrete (RC) columns. The proposed method, which consists of a pair of steel rods, two reverse-threaded couplers, and four corner blocks, is feasible and straightforward. A quasi-static cyclic loading test was performed on the columns externally strengthened by the steel rods. It was found that the corner blocks and the external steel rods with a low prestress level effectively confined the concrete on the compression side of plastic hinges, which eventually induced flexural failure with a ductility higher than three in the strengthened columns. In addition, an analytical approach to predict the shear strength and ultimate flexural strength of the externally strengthened columns was applied. The comparison of analytical and experimental results showed that the analytical approach provided highly accurate predictions on the maximum strength and the failure mode of the externally strengthened columns. It is expected that the application of the proposed method will improve the seismic performance of damaged or deteriorated RC structures, thereby increasing their lifespan expectancy and sustainability.


2008 ◽  
Vol 26 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Lee Keun Park ◽  
Matchala Suneel ◽  
Im Jong Chul

Sign in / Sign up

Export Citation Format

Share Document