EFFECTS OF INITIAL STATIC SHEAR STRESS AND CONFINING PRESSURE ON CYCLIC SHEAR STRENGTH CHARACTERISTICS OF EMBANKMENT SOILS OF RESERVOIRS

Author(s):  
Atsushi KOYAMA ◽  
Motoyuki SUZUKI ◽  
Yuichi KAMIKI
Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2542
Author(s):  
Junxiu Lv ◽  
Xiaoyuan Zhang

This study mainly investigates the prediction models of shear parameters and dynamic creep instability for asphalt mixture under different high temperatures to reveal the instability mechanism of the rutting for asphalt pavement. Cohesive force c and internal friction angle φ in the shear strength parameters for asphalt mixture were obtained by the triaxial compressive strength test. Then, through analyzing the influence of different temperatures on parameters c and φ, the prediction models of shear strength parameters related to temperature were developed. Meanwhile, the corresponding forecast model related to confining pressure and shear strength parameters was obtained by simplifying the calculation method of shear stress level on the failure surface under cyclic loading. Thus, the relationship of shear stress level with temperature was established. Furthermore, the cyclic time FN of dynamic creep instability at 60 °C was obtained by the triaxial dynamic creep test, and the effects of confining pressure and shear stress level were considered. Results showed that FN decreases exponentially with the increase in stress levels under the same confining pressure and increases with the increase in confining pressure. The ratio between shear stress level and corresponding shear strength under the same confining pressure was introduced; thus, the relationship curve of FN with shear stress level can eliminate the effect of different confining pressures. The instability prediction model of FN for asphalt mixture was established using exponential model fitting analysis, and the rationality of the model was verified. Finally, the change rule of the parameters in the instability prediction model was investigated by further changing the temperature, and the instability forecast model in the range of high temperature for the same gradation mixture was established by the interpolation calculation.


Author(s):  
N. Yoshimoto ◽  
M. Hyodo ◽  
Y. Nakata ◽  
R. P. Orense ◽  
H. Murata

2006 ◽  
Vol 62 (1) ◽  
pp. 240-245 ◽  
Author(s):  
Masayuki HYODO ◽  
Jonggun KIM ◽  
Keisuke FUKUMOTO ◽  
Suguru YAMADA ◽  
Norimasa YOSHIMOTO

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Baojian Li ◽  
Panpan Guo ◽  
Gaoyun Zhou ◽  
Zhe Wang ◽  
Gang Lei ◽  
...  

Sand elements in the natural or manmade field have often undergone initial static shear stresses before suffering cyclic loading. To explore the effect of static shear stress, a series of undrained cyclic triaxial tests were performed on dense and loose calcareous sand under different initial and cyclic shear stresses. The triaxial test results are used to describe the effect of static shear stress on the cyclic response of the calcareous sand with different relative density. Cyclic mobility, flow deformation, and residual deformation accumulation are the three main failure modes under varying static and cyclic shear stress levels. The cyclic resistance of dense sand is greater than that of loose sand, but the initial static stress has different effects on the cyclic resistance of the two kinds of sand. The dense sand owns a higher cyclic resistance with SSR increasing, while for the loose sand, 0.12 is the critical SSR corresponding to the lowest value of the cyclic resistance. The dense sand has more fast accumulation of dissipated energy, compared with loose sand. Additionally, an exponential relationship is established between static shear stress, relative density, and normalized energy density.


2012 ◽  
Vol 28 (7) ◽  
pp. 31-40 ◽  
Author(s):  
Uk-Gie Kim ◽  
Dong-Wook Kim ◽  
Joon-Yong Lee ◽  
Ju-Hyong Kim

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jun Wang ◽  
Meng-Jie Ying ◽  
Fei-Yu Liu ◽  
Hong-Tao Fu ◽  
Jun-Feng Ni ◽  
...  

In order to investigate the influence of sand particle-size gradation on cyclic and postcyclic shear strength behaviour on sand-geotextile interfaces, a series of monotonic direct shear (MDS), cyclic direct shear (CDS), and postcyclic direct shear (PCDS) tests were performed using a large-scale direct shear apparatus. The influence of cyclic shear history on the direct shear behaviour of the interface was studied. The results indicated that cyclic shear stress degradation occurred at the sand-geotextile interface. Shear volumetric contraction induced by the cyclic direct shear increased with the increase in cycle number. The lowest final contraction value was observed in discontinuously graded sand. In the MDS tests, there were great differences in interface shear strength due to the different particle-size gradations, whereas the differences between shear volumes were negligible. In the PCDS tests, the shear stress-displacement curves exhibited postpeak stress hardening behaviour for different particle-size gradations, and differences in shear volumes were detected. The well-graded sand-geotextile interface had a higher value of shear stiffness and a higher damping ratio relative to the other interfaces. Postcyclic shear stress degradation was observed for the discontinuously graded sand-geotextile interface.


Sign in / Sign up

Export Citation Format

Share Document