scholarly journals Vibration analysis of carbon nanotubes-based zeptogram masses sensors and taking into account their rotatory inertia

2018 ◽  
Vol 149 ◽  
pp. 02087 ◽  
Author(s):  
A. Azrar ◽  
L. Azrar ◽  
A. A. Aljinaidi

In this research work, the transverse vibration behaviour of single-walled carbon nanotubes (SCNT) based mass sensors is studied using the Timoshenko beam and nonlocal elasticity theories. The nonlocal constitutive equations are used in the formulations and the CNT with different lengths, attached mass (viruses and bacteria) and the general boundary conditions are considered. The dimensionless frequencies and associated modes are obtained for one and two attached masses and different boundary conditions. The effects of transverse shear deformation and rotatory inertia, nonlocal parameter, length of the carbon nanotubes, and attached mass and its location are investigated in detail for each considered problem. The relationship between the frequencies and mode shapes of the sensor and the attached zeptogramme masses are obtained. The sensing devices for biological objects including viruses and bacteria can be elaborated based on the developed sensitivity and frequency shift methodological approach.

2019 ◽  
Vol 26 (11-12) ◽  
pp. 913-928 ◽  
Author(s):  
Seyed Amirhosein Hosseini ◽  
Farshad Khosravi ◽  
Majid Ghadiri

The main objective of the present work is devoted to the study of both free and time-dependent forced axial vibration simultaneously in single-walled carbon nanotubes subjected to a moving load. The governing equation is derived via Hamilton’s principle. Classical theory, along with the Rayleigh and Bishop theories, is used to analyze the nonlocal vibrational behaviors of single-walled carbon nanotubes. A Galerkin method is established to solve the derived equations. The boundary conditions are assumed to be clamped-clamped and clamped-free. Firstly, the variation of nondimensional natural frequencies is calculated based on the classical theory, and the effect of the nonlocal parameter, the mode number and the length is illustrated and schematically compared for clamped-clamped and clamped-free boundary conditions. Besides, the obtained nondimensional responses are compared with the results of another study to validate the accuracy of the used method. Ultimately, the dynamic axial displacement due to the moving load in the time domain has been studied for the first time. Furthermore, the effects of the thickness, length, velocity of the moving load, excitation frequency, and the nonlocal parameter based on the classical, Rayleigh, and Bishop theories are investigated in this paper. Also, the influence of the nonlocal parameter on the variations of maximum axial displacement with respect to the velocity parameter for the aforementioned boundary conditions and theories is evaluated relative to each other.


Author(s):  
R. Ansari ◽  
H. Rouhi

In the current work, the vibration characteristics of single-walled carbon nanotubes (SWCNTs) under different boundary conditions are investigated. A nonlocal elastic shell model is utilized, which accounts for the small scale effects and encompasses its classical continuum counterpart as a particular case. The variational form of the Flugge type equations is constructed to which the analytical Rayleigh–Ritz method is applied. Comprehensive results are attained for the resonant frequencies of vibrating SWCNTs. The significance of the small size effects on the resonant frequencies of SWCNTs is shown to be dependent on the geometric parameters of nanotubes. The effectiveness of the present analytical solution is assessed by the molecular dynamics simulations as a benchmark of good accuracy. It is found that, in contrast to the chirality, the boundary conditions have a significant effect on the appropriate values of nonlocal parameter.


NANO ◽  
2012 ◽  
Vol 07 (03) ◽  
pp. 1250018 ◽  
Author(s):  
HESSAM ROUHI ◽  
REZA ANSARI

In this paper, a nonlocal Flugge shell model is utilized to investigate the axial buckling behavior of double-walled carbon nanotubes (DWCNTs) under various boundary conditions. According to the nonlocal elasticity theory, the displacement field equations coupled by the van der Waals interaction are derived. The set of governing equations of motion is then solved by the Rayleigh–Ritz method. The present analysis can treat boundary conditions in a layer-wise manner. The effects of nonlocal parameter, layer-wise boundary conditions and geometrical parameters on the mechanical behavior of DWCNTs are examined. Furthermore, molecular dynamics simulations are performed to assess the validity of the results and also to predict the appropriate values of nonlocal parameter. It is found that the type of boundary conditions affects the proper value of nonlocal parameter.


2017 ◽  
Vol 23 (11) ◽  
pp. 1456-1481 ◽  
Author(s):  
Matteo Strozzi ◽  
Francesco Pellicano

In this paper, the linear vibrations of triple-walled carbon nanotubes (TWNTs) are investigated. A multiple elastic thin shell model is applied. The TWNT dynamics is studied in the framework of the Sanders–Koiter shell theory. The van der Waals interaction between any two layers of the TWNT is modelled by a radius-dependent function. The shell deformation is described in terms of longitudinal, tangential and radial displacements. Simply supported, clamped and free boundary conditions are applied. The three displacement fields are expanded by means of a double mixed series based on Chebyshev polynomials for the longitudinal variable and harmonic functions for the tangential variable. The Rayleigh–Ritz method is applied to obtain approximate natural frequencies and mode shapes. The present model is validated in the linear field by means of comparisons with data from the literature. This study is focused on determining the effect of geometry and boundary conditions on the natural frequencies of TWNTs.


2018 ◽  
Vol 22 (5) ◽  
pp. 1496-1541 ◽  
Author(s):  
Vahid Tahouneh

In the present work, by considering the agglomeration effect of single-walled carbon nanotubes, free vibration characteristics of functionally graded nanocomposite sandwich sectorial plates are presented. The volume fractions of randomly oriented agglomerated single-walled carbon nanotubes are assumed to be graded in the thickness direction. To determine the effect of carbon nanotube agglomeration on the elastic properties of carbon nanotube-reinforced composites, a two-parameter micromechanical model of agglomeration is employed. In this research work, an equivalent continuum model based on the Eshelby–Mori–Tanaka approach is considered to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented straight carbon nanotubes. The two-dimensional generalized differential quadrature method as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The proposed sectorial plates are simply supported at radial edges, while all possible combinations of free, simply supported, and clamped boundary conditions are applied to the other two circular edges. The benefit of using the considered power-law distribution is to illustrate and present useful results arising from symmetric and asymmetric profiles. The effects of agglomeration, geometrical, and material parameters together with the boundary conditions on the frequency parameters of the sandwich functionally graded nanocomposite plates are investigated. It is shown that the natural frequencies of structure are seriously affected by the influence of carbon nanotubes agglomeration. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analyze the sandwich sectorial plates.


2019 ◽  
Vol 30 (4) ◽  
pp. 1689-1723 ◽  
Author(s):  
Bijan Mohamadi ◽  
S. Ali Eftekhari ◽  
Davood Toghraie

Purpose The purpose of this paper is to investigate nonlinear vibrations of triple-walled carbon nanotubes buried within Pasternak foundation carrying viscous fluids. Design/methodology/approach Considering the geometry of nanotubes, the governing equations were initially derived using Timoshenko and modified couple stress theories and by taking into account Von-Karman expressions. Then, by determining boundary conditions, type of fluid motion, Knudsen number and, ultimately, fluid viscosity, the principal equation was solved using differential quadrature method, and linear and nonlinear nanotube frequencies were calculated. Findings The results indicated that natural frequency is decreased as the fluid velocity and aspect ratio increase. Moreover, as the aspect ratio is increased, the results converge for simple and fixed support boundary conditions, and the ratio of nonlinear to linear frequencies approaches. Natural frequency of vibrations and critical velocity increase as Pasternak coefficient and characteristic length increase. As indicated by the results, by assuming a non-uniform velocity for the fluid and a slip boundary condition at Kn = 0.05, reductions of 10.714 and 28.714% were observed in the critical velocity, respectively. Moreover, the ratio of nonlinear to linear base frequencies decreases as the Winkler and Pasternak coefficients, maximum deflection of the first wall and characteristic length are increased in couple stress theory. Originality/value This paper is a numerical investigation of nonlinear vibration analysis for triple-walled carbon nanotubes conveying viscous fluid.


Sign in / Sign up

Export Citation Format

Share Document