scholarly journals Some aspects of technology transfer

2018 ◽  
Vol 178 ◽  
pp. 08006
Author(s):  
Alexei Toca ◽  
Vadim Iaţchevici ◽  
Tatiana Niţulenco ◽  
Nicolae Rusu

Technological transfer is a complex and varied process, being realized out at different stages of technology readiness level. Being essentially a trading, technology transfer is fully subject to market laws. The technology transfer strategy and tactics are strongly influenced by the degree of technology's readiness level, systemic character, functional orientation and universality, technical and economic determination degrees that can be specified and determined in accordance with the stages of technology life cycle.

Author(s):  
Judi E. See

The Human Readiness Level scale complements and supplements the existing technology readiness level scale to support comprehensive and systematic evaluation of human system aspects throughout a system’s life cycle. The objective is to ensure humans can use a fielded technology or system as intended to support mission operations safely and effectively. This article defines the nine human readiness levels in the scale, explains their meaning, and illustrates their application using a helmet-mounted display example.


Author(s):  
George Salazar ◽  
M. Natalia Russi-Vigoya

Communication of the maturity of technology through the program/product life cycles helps enhance risk management from the beginning and support decision-making strategies for research, development, and allocation of resources. Currently, many organizations use the technology readiness level (TRL) as a simple metric to indicate the maturity of the technology. This article will discuss the TRL history, define the TRL levels, show how the TRL relates to the technology life cycle, and how the TRL framework contributes to the human readiness level (HRL) structure. Through the TRL advantages and disadvantages, this article will show how the TRL falls short in numerous areas of engineering, including the integration readiness of system/subsystem components and assessment of the readiness of the technology to operate within the human capabilities and limitations. Yet the article also shows how the TRL serves as the foundation for HRL.


2021 ◽  
Vol 295 ◽  
pp. 126426
Author(s):  
Fernando Bruno Dovichi Filho ◽  
York Castillo Santiago ◽  
Electo Eduardo Silva Lora ◽  
José Carlos Escobar Palacio ◽  
Oscar Agustin Almazan del Olmo

2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110121
Author(s):  
David Portugal ◽  
André G Araújo ◽  
Micael S Couceiro

To move out of the lab, service robots must reveal a proven robustness so they can be deployed in operational environments. This means that they should function steadily for long periods of time in real-world areas under uncertainty, without any human intervention, and exhibiting a mature technology readiness level. In this work, we describe an incremental methodology for the implementation of an innovative service robot, entirely developed from the outset, to monitor large indoor areas shared by humans and other obstacles. Focusing especially on the reliability of the fundamental localization system of the robot in the long term, we discuss all the incremental software and hardware features, design choices, and adjustments conducted, and show their impact on the performance of the robot in the real world, in three distinct 24-h long trials, with the ultimate goal of validating the proposed mobile robot solution for indoor monitoring.


Sign in / Sign up

Export Citation Format

Share Document