scholarly journals Effect of load current harmonics on vibration of three-phase generator

2018 ◽  
Vol 197 ◽  
pp. 11023
Author(s):  
I Made Wiwit Kastawan

Almost all today electrical loads are considered non-linear such as switch mode power supply (SMPS) for powering computer and mobile phone or variable speed drive (VSD) for driving home and industrial electric motors. These loads generate ac non-sinusoidal current containing a lot of harmonics as indicated by its high total harmonics distortion (THD) figure. Current harmonics bring negative effects into all electrical power system components, including three-phase generator. This paper provides analysis of load current harmonics effects on vibration of three-phase generator. Three different laboratory experiments have been conducted i.e. three-phase linear resistive loading, non-linear loading with a three-phase ac/dc converter and non-linear loading with three single-phase capacitor filtered ac/dc converters. Results show that the higher load current harmonics content the higher is vibration of the three-phase generator. Non-linear loading with a three-phase ac/dc converter that generate about 24.7% THD gives an increase of 4.3% and 5.5% in average of vertical and horizontal vibrations of the three-phase generator respectively. Further, non-linear loading with three single-phase capacitor filtered ac/dc converters that generate THD as high as 74.9% gives significant increase of 28.1% and 23.6% in average of vertical and horizontal vibrations respectively.

Author(s):  
Shuchi Vishnoi ◽  

This paper is intended to simulate a power quality conditioning device, Unified Power Quality Conditioner (UPQC), in countryside areas for non-linear loading. From past decades there is much increase in the requirement of the good quality electrical power in single phase distribution grids established in these locations. Due to technical advancement, three-phase loads are practiced more than single phase loads so that the demand for three phase distribution grids is growing. But the installation process of three-phase grids, at countryside areas, is not an economic option and to get access to these systems is a very challenging task. So a neighbouring three-phase distribution system is required to be established at the location, where single-phase to three-phase UPQC with single wire earth return is appropriate for the end user due to economic considerations. A dual compensation strategy is implemented to obtain the reference quantities for controlling the converters. The proposed idea is accomplished to eliminate voltage harmonics and mitigate further instabilities and power quality problems. This system allows the balanced and regulated voltage with lower harmonic content. Synchronous Reference Frame (SRF) based controllers are considered to organize the input grid current and the load voltages of the UPQC. The present prototype under consideration analyses and validates the compensation and controlling techniques using PI controller. The control strategies are simulated using MATLAB/SIMULINK.


1970 ◽  
Vol 109 (3) ◽  
pp. 41-45 ◽  
Author(s):  
I. Temiz ◽  
C. Akuner ◽  
H. Calik

Induction motors are known to affect the electrical power system in terms of harmonics. Induction motors fed by unbalanced power systems produce additional current harmonics. These harmonics cause additional power losses in the machine. The method of symmetrical components is often used in this kind of unbalanced operation analysis. In this study, the performance of a three phase induction motor supplied by unbalanced power system due to the various causes has been examined using both experimental method and Matlab/Simulink model. Ill. 11, bibl. 6, tabl. 6 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.109.3.167


10.29007/s9ch ◽  
2018 ◽  
Author(s):  
Mitrajsinh Janaksinh Chudasama ◽  
Prof. Dr. P. N. Tekwani ◽  
Siddharthsingh K Chauhan ◽  
Vinod Patel

Power quality at the source side deteriorates due to current harmonics which are introduced in the power system by non-linear loads, originating a vital difficulty. Rectifiers, variable speed drive, switched mode power supply, etc. types of non-linear loads create such harmonics. Con- ventional technique to eliminate such harmonics is use of passive filters but this technique has the disadvantage of series and parallel resonance within the network impedance, overcompen- sation of reactive power at fundamental frequency and poor flexibility. Shunt Active Harmonic Filters (SAHF) are generally used to reduce current harmonics. The active harmonic filters introduce remunerating currents into the source to neutralize the harmonics possessed by the load current. The compensating currents will be derived by sensing three-phase voltages at the Point of Common Coupling (PCC) and load currents. Efforts are made in this study to ana- lyze Fast Fourier Transform (FFT) algorithm, Instantaneous Reactive Power (IRP) technique, and Synchronous Reference Frame (SRF) technique used to derive the reference compensating currents. These compensating currents act as reference currents for the fixed switching based current controllers which generate control signals for the SAHF employing three-level T-type Neutral Point Clamped (TNPC) topology of converter.


Author(s):  
Ashutosh Srivastava ◽  
Amarjeet Singh

Harmonics in the power system is not new issue. This phenomenon has been introduced by technocrat throughout in the history of electrical power system. Maintaining the power quality in a power system is an essential assignment due to increase in wide variety of non-linear loads. The current drawn by such non linear loads are non-sinusoidal and therefore contains harmonics. Therefore, it becomes necessary to compensate these unwanted harmonics for better performance of the system. In this paper, a review of compensations of harmonics in distribution system has been explained.


10.29007/nkxw ◽  
2018 ◽  
Author(s):  
Khoda N. Odedra ◽  
Saurabh Pandya ◽  
Dhaval Patel ◽  
Maheshwariba Zala

Distribution systems have been facing serious problems of harmonics load current mainly due to advancement in power electronic based and other non-linear loads. The DSTATCOM has been widely used to mitigate the load current harmonics problems in distribution system. In this paper design and simulation of DSTATCOM with SRF Control Strategy is carried out with 3-phase 3-wire distribution system to mitigate the harmonics load current problem using MATLAB /SIMULIMK software.


1986 ◽  
Vol 23 (2) ◽  
pp. 121-125
Author(s):  
P. H. G. Allen ◽  
K. J. D'Souza

Large transformers, like highly rated rotating machines, can be modelled in ‘micro’ form to demonstrate significant second order, non-linear, features. The design and manufacture of 3 kVA (nominal) rating three-phase and three single-phase transformer bank units, all with three-limb cores and 0.17 per unit leakage reactance are described.


2013 ◽  
Vol 676 ◽  
pp. 251-254
Author(s):  
Wei Li Wu

This article analysis the relationship between geomagentically induced currents(GIC) in electrical power system flowing through 500kV transformer neutral point in Ling’Ao power grid and the geomagnetic data observed at Guangzhou geomagnetic observatory during 2004/11 -2006/12. It is found that correlation coefficient between GIC and magnetic field component variation may be greater than that of time derivative of the geomagnetic field, which are all less than -0.5. According to the relation, The minimum amplitude of geomagnetic component variation is 7.08(nT/min) in term of transformer of single or three phase five columns while is about27.47(nT/min) when the type is three phase three columns.


Sign in / Sign up

Export Citation Format

Share Document