scholarly journals Power Quality Improvement using UPQC with Single and Three-Phase Non-linear Loads in Countryside Areas

Author(s):  
Shuchi Vishnoi ◽  

This paper is intended to simulate a power quality conditioning device, Unified Power Quality Conditioner (UPQC), in countryside areas for non-linear loading. From past decades there is much increase in the requirement of the good quality electrical power in single phase distribution grids established in these locations. Due to technical advancement, three-phase loads are practiced more than single phase loads so that the demand for three phase distribution grids is growing. But the installation process of three-phase grids, at countryside areas, is not an economic option and to get access to these systems is a very challenging task. So a neighbouring three-phase distribution system is required to be established at the location, where single-phase to three-phase UPQC with single wire earth return is appropriate for the end user due to economic considerations. A dual compensation strategy is implemented to obtain the reference quantities for controlling the converters. The proposed idea is accomplished to eliminate voltage harmonics and mitigate further instabilities and power quality problems. This system allows the balanced and regulated voltage with lower harmonic content. Synchronous Reference Frame (SRF) based controllers are considered to organize the input grid current and the load voltages of the UPQC. The present prototype under consideration analyses and validates the compensation and controlling techniques using PI controller. The control strategies are simulated using MATLAB/SIMULINK.

IJOSTHE ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Ankeeta . ◽  
Vasant Acharya

Power generation through the renewable energy sources has become more viable and economical than the fossil fuel based power plants. By integrating small scale distributed energy resources, microgrids are being introduced as an alternative approach in generating electrical power at distribution voltage level. The power electronic interface provides the necessary flexibility, security and reliability of operation between micro-sources and the distribution system. The presence of non-linear and the unbalanced loads in the distribution system causes power quality issues in the Microgrid system. This paper explores and reviews different control strategies developed in the literature for the power quality enhancement in microgrids.


2018 ◽  
Vol 197 ◽  
pp. 11023
Author(s):  
I Made Wiwit Kastawan

Almost all today electrical loads are considered non-linear such as switch mode power supply (SMPS) for powering computer and mobile phone or variable speed drive (VSD) for driving home and industrial electric motors. These loads generate ac non-sinusoidal current containing a lot of harmonics as indicated by its high total harmonics distortion (THD) figure. Current harmonics bring negative effects into all electrical power system components, including three-phase generator. This paper provides analysis of load current harmonics effects on vibration of three-phase generator. Three different laboratory experiments have been conducted i.e. three-phase linear resistive loading, non-linear loading with a three-phase ac/dc converter and non-linear loading with three single-phase capacitor filtered ac/dc converters. Results show that the higher load current harmonics content the higher is vibration of the three-phase generator. Non-linear loading with a three-phase ac/dc converter that generate about 24.7% THD gives an increase of 4.3% and 5.5% in average of vertical and horizontal vibrations of the three-phase generator respectively. Further, non-linear loading with three single-phase capacitor filtered ac/dc converters that generate THD as high as 74.9% gives significant increase of 28.1% and 23.6% in average of vertical and horizontal vibrations respectively.


Author(s):  
Ashutosh Srivastava ◽  
Amarjeet Singh

Harmonics in the power system is not new issue. This phenomenon has been introduced by technocrat throughout in the history of electrical power system. Maintaining the power quality in a power system is an essential assignment due to increase in wide variety of non-linear loads. The current drawn by such non linear loads are non-sinusoidal and therefore contains harmonics. Therefore, it becomes necessary to compensate these unwanted harmonics for better performance of the system. In this paper, a review of compensations of harmonics in distribution system has been explained.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 652
Author(s):  
S Shamshul Haq ◽  
D Lenine ◽  
S V. N. L. Lalitha

Unified Power Quality Compensator (UPQC) is used to protect the sensitive loads in the distribution system from voltage and current disturbances. The compensation capability of UPQC depends on the control strategies used for shunt and series converters. Conventional adaptive hysteresis controller pulse width modulation technique had failed to track exactly during transient conditions and disturbances at load and source side. In paper fuzzy adaptive hysteresis controller is proposed for three phase four wire UPQC for compensating voltage sag/swell, current harmonics, voltage harmonics and neutral current compensation. Fuzzy adaptive hysteresis controller can effectively compensate the power quality problems during the transient conditions. A comparative simulation analysis of proposed and conventional methods are presented   in this paper using MATLAB/SIMULINK tool.


Author(s):  
Mohmmad Ahmad ◽  
Sheeraz Kirmani

<p>This paper presents the adaptive filtering based least mean square control<br />algorithm for distribution static compensator (DSTATCOM) in three-phase<br />grid tied system for linear/non-linear load, to solve the power quality<br />problems caused by solid-state equipment and devices. This is shown that the<br />active component weights obtained from the load currents in the LMS<br />adaptive filter are used to produce the reference currents and subsequently<br />produces the switching pulses for VSC of the compensator. The complete<br />circuit along with the adaptive technique and diode bridge rectifier type nonlinear load is simulated in Matlab/Simulink software. Initially the circuit was<br />simulated for a three phase linear inductive load. Later it was simulated for a<br />rectifier load connected at PCC with a disconnection of the load of any phase<br />for a short duration of time. It is concluded that the harmonics are found<br />within the limit. The harmonics and power results for both types of loads are<br />compared in a tabular form. Hence this three phase system with<br />DSTATCOM improves the power quality in the three-phase distribution<br />network therefore, serves to provide harmonics reduction, load balancing and<br />regulating the terminal voltage at the point of common coupling (PCC).</p>


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2742
Author(s):  
Adrian Pană ◽  
Alexandru Băloi ◽  
Florin Molnar-Matei

To increase the electrical power quality, in the last decades, an intense development in the last decades of high-performance equipment built as advanced power electronics applications, such as the compensators from Switching Power Converter category, has taken place. For all that, Reactive Power Compensators (RPC) based on passive circuit elements, such as Static var Compensators (SVCs), still occupy a wide range of applications in customer and installations of the distribution system installations. The functions of power factor (PF) improvement and load balancing in a three-phase distribution network can be achieved with an unbalanced SVC, known as the Adaptive Balancing Reactive Compensator (ABRC). Presenting first the mathematical model of the initial sizing and the working mechanism of a Balancing Reactive Compensator (BRC) for a three-phase four-wire network, this article develops a compensator resizing algorithm through an iterative change of the initial sizing to transform the compensator into a Balancing Capacitive Compensator (BCC), which keeps the same functions. By using two computational and modeling software tools, a case study on the application of the method was carried out, demonstrating the availability of the sizing problem solution and validating the unbalanced capacitive compensation as an efficient way to PF improving and load balancing in a PCC (Point of Common Coupling).


Sign in / Sign up

Export Citation Format

Share Document