scholarly journals Simulation, Design, and Analysis of 3-Level Shunt Active Harmonic Filter using T-Typed NPC (TNPC) Topology

10.29007/s9ch ◽  
2018 ◽  
Author(s):  
Mitrajsinh Janaksinh Chudasama ◽  
Prof. Dr. P. N. Tekwani ◽  
Siddharthsingh K Chauhan ◽  
Vinod Patel

Power quality at the source side deteriorates due to current harmonics which are introduced in the power system by non-linear loads, originating a vital difficulty. Rectifiers, variable speed drive, switched mode power supply, etc. types of non-linear loads create such harmonics. Con- ventional technique to eliminate such harmonics is use of passive filters but this technique has the disadvantage of series and parallel resonance within the network impedance, overcompen- sation of reactive power at fundamental frequency and poor flexibility. Shunt Active Harmonic Filters (SAHF) are generally used to reduce current harmonics. The active harmonic filters introduce remunerating currents into the source to neutralize the harmonics possessed by the load current. The compensating currents will be derived by sensing three-phase voltages at the Point of Common Coupling (PCC) and load currents. Efforts are made in this study to ana- lyze Fast Fourier Transform (FFT) algorithm, Instantaneous Reactive Power (IRP) technique, and Synchronous Reference Frame (SRF) technique used to derive the reference compensating currents. These compensating currents act as reference currents for the fixed switching based current controllers which generate control signals for the SAHF employing three-level T-type Neutral Point Clamped (TNPC) topology of converter.

Author(s):  
Jayababu Badugu ◽  
Y. P.Obulesu ◽  
Ch. Saibabu

Three-phase Fixed Capacitor Thyristor Controlled Reactor is widely used for reactive power compensation in power systems because of reduced cost and high reliability.  The problem with FC-TCR is that to generate current harmonics when it is partially conducting. When this harmonic current is interacted with system impedance, voltage waveform will distorted. This harmonic pollution is undesirable in power systems. Therefore, it is important to know the harmonic behaviour of three-phase FC-TCR before they can be used in a power system network. This paper presents the harmonic analysis of three-phase FC-TCR operating under balanced and unbalanced conditions. This analysis is useful to design the harmonic filter to reduce the harmonic pollution in power systems.The proposed work is implemented in MATLAB environment.


2018 ◽  
Vol 41 (9) ◽  
pp. 2451-2464
Author(s):  
Moushumi Patowary ◽  
Gayadhar Panda ◽  
Bimal C Deka

This paper presents the collective operation and comparative assessment of artificial neural network (ANN)-based adaptive controller with detuned-inductor capacitor (LC) filter facility in grid-tied voltage source control (VSC) system. In order to facilitate proper shaping of VSC outputs and to avoid voltage surge or current surge issues that may occur during the synchronization, the controlling action should reflect importance of total impedance (Zt) effect for: (i) accurate online weight updating, (ii) generation of correct references for proper shaping of VSC outputs, (iii) accurate assessment and exclusion of current harmonics and (iv) robust in defending any system perturbation. This impedance is taken into consideration during the run-time weight updation process through extended control steps in order to pass over various losses that certainly occurs in transformers, filters, line parameters and so forth. Performance of the system is well improved with an inclusion of total impedance (Zt) measured between the VSC and point of common coupling (PCC). A detuned-LC filter is predominantly intended for reactive power compensation, power factor correction, prompt and accurate alleviation of the harmonics. A comparative assessment in between enhanced and conventional adaptive controllers that are designed in MATLAB/Simulink clarifies the robust performances of the proposed control design under sundry system turbulences. The verification of the proposed enhanced controller is approved with the hardware results obtained using dSPACE RTI 1202 kit.


2018 ◽  
Vol 197 ◽  
pp. 11023
Author(s):  
I Made Wiwit Kastawan

Almost all today electrical loads are considered non-linear such as switch mode power supply (SMPS) for powering computer and mobile phone or variable speed drive (VSD) for driving home and industrial electric motors. These loads generate ac non-sinusoidal current containing a lot of harmonics as indicated by its high total harmonics distortion (THD) figure. Current harmonics bring negative effects into all electrical power system components, including three-phase generator. This paper provides analysis of load current harmonics effects on vibration of three-phase generator. Three different laboratory experiments have been conducted i.e. three-phase linear resistive loading, non-linear loading with a three-phase ac/dc converter and non-linear loading with three single-phase capacitor filtered ac/dc converters. Results show that the higher load current harmonics content the higher is vibration of the three-phase generator. Non-linear loading with a three-phase ac/dc converter that generate about 24.7% THD gives an increase of 4.3% and 5.5% in average of vertical and horizontal vibrations of the three-phase generator respectively. Further, non-linear loading with three single-phase capacitor filtered ac/dc converters that generate THD as high as 74.9% gives significant increase of 28.1% and 23.6% in average of vertical and horizontal vibrations respectively.


2020 ◽  
Vol 15 (1) ◽  
pp. 181-186
Author(s):  
Tilak Giri ◽  
Ram Prasad Pandey ◽  
Sabin Bhandari ◽  
Sujan Moktan ◽  
Lagat Karki

Due to intensive use of power converters and other non-linear loads, power quality is degrading. The presence of harmonics in the power lines result in greater power losses in distribution, interference problems in communication systems. Non linearity reduces the efficiency and power factor of the system. As the power factor reduces, the reactive power demanded from the supply increases which have no any contribution in energy transfer, so compensation is required. For this, shunt passive filter has been developed but it is bulky and frequency dependent and has many drawbacks. In contrast to passive filter, shunt active filter (SAF) has been developed which is smaller and has wide range of applications. In this paper, shunt active filter based on p-q theory is demonstrated for compensating reactive power and current harmonics. Simulation has been done with and without SAF and results are presented and ended with recommendation and conclusion. An effort is made to reduce the THD of the source current below 5% (specified by IEEE).


Author(s):  
M.Balasubramanian Et.al

The aim of this paper is to use renewable energy sources to meet the demand for electricity. For DC-AC conversion, a solar-powered three-phase grid-connected system with a boost (DC-DC) converter and three-phase inverter is used. The updated Perturb and Observe (P&O) Algorithm is used to map the solar photovoltaic system's maximum power point. Synchronous Reference Frame-Phase Locked Loop Theory is used to compensate for harmonic and reactive power. This proposed grid-connected system is used to improve the system's power efficiency as well as extract the full power and feed it to the distribution system. Using Matlab tools, the simulation result demonstrates reasonable efficiency.


Author(s):  
Satyanarayan Gorantla ◽  
Goli Ravi Kumar

The paper presents the analysis of harmonic distortion when non-linear load is connected in different phases of power system with STATCOM for singly excited induction generator system with wind turbine as prime mover. Now-a-days due to the drastically increased in use of non linear loads causes many power quality problems in power system network. Those problems are classified as reactive power problems, harmonics, voltage sags and swells. Out of these problems harmonic problems are major concern. Custom power devices proposed for mitigation of power quality in network. For compensation of harmonic, static compensator (STATCOM) is used. The paper presents the compensation of harmonic power quality issues using STATCOM for the system with singly-excited induction generator feeding non-linear load connected in different phases. STATCOM is controlled using synchronous reference frame theory to produce pulses to switches of STATCOM sensing the input parameters. Proposed concept was developed using MATLAB/SIMULINK software and results are presented for non-linear load connected in different phases of the power system. THD analysis was shown for source current and load current for different cases.


Author(s):  
Hitendra Singh Thakur ◽  
Ram Narayan Patel

For the three phase power electronic and drive applications, vector control or the synchronous reference frame (SRF) based control concept is well accepted and settled amongst the research communities. Although the SRF concept has gained popularity and appreciation in developing the three phase controllers, still the concept has not reached the same level in case of a single phase system. The work presented in this paper is mainly concerned to the design of a hybrid Artificial Neural Network and Fuzzy Logic based controller for a single phase stand-alone photo-voltaic (PV) power system. The adaptive neuro fuzzy inference system (ANFIS) controller proposed in this paper is chiefly meant for improving the transient and steady state responses; for minimizing the distorting effect of the low order load current harmonics encountered particularly in case of switching the drive based inductive loads and to help maintain the inverter output voltage constant under different loading circumstances. The result obtained through simulation work, shows the effectiveness of the proposed controller as compared with the previously established research works.


Author(s):  
Goggi Kirshna Sanyasi Rao and P.Murari

This paper shows the method of improving the power quality using shunt active power filter. In order to protect the supply system from current harmonics, we have to use the active power filters. These are used to compensate the reactive power compensation, but the performance of active power filters are based on various control strategies. This paper presents the complete examination to estimate the working of SHAF for generating the current references under steady and transient for balanced, unbalanced and non-sinusoidal conditions by using PI controller. The P-Q theory and synchronous reference frame theory, which are widely used in SHAF. The most validate results obtained by simulation with matlab/simulink software are carried out with PI controller for P-Q control theory for various voltage conditions like balanced, unbalanced and non-sinusoidal conditions and dynamic load changes.


Sign in / Sign up

Export Citation Format

Share Document