Single-Phase to Three-Phase Power Converter with Reduced DC-Link Voltage Ripple and Grid Current Harmonics

Author(s):  
Anup Kumar ◽  
Mohan V. Aware ◽  
B. S. Umre
2018 ◽  
Vol 197 ◽  
pp. 11023
Author(s):  
I Made Wiwit Kastawan

Almost all today electrical loads are considered non-linear such as switch mode power supply (SMPS) for powering computer and mobile phone or variable speed drive (VSD) for driving home and industrial electric motors. These loads generate ac non-sinusoidal current containing a lot of harmonics as indicated by its high total harmonics distortion (THD) figure. Current harmonics bring negative effects into all electrical power system components, including three-phase generator. This paper provides analysis of load current harmonics effects on vibration of three-phase generator. Three different laboratory experiments have been conducted i.e. three-phase linear resistive loading, non-linear loading with a three-phase ac/dc converter and non-linear loading with three single-phase capacitor filtered ac/dc converters. Results show that the higher load current harmonics content the higher is vibration of the three-phase generator. Non-linear loading with a three-phase ac/dc converter that generate about 24.7% THD gives an increase of 4.3% and 5.5% in average of vertical and horizontal vibrations of the three-phase generator respectively. Further, non-linear loading with three single-phase capacitor filtered ac/dc converters that generate THD as high as 74.9% gives significant increase of 28.1% and 23.6% in average of vertical and horizontal vibrations respectively.


2015 ◽  
Vol 740 ◽  
pp. 359-363
Author(s):  
Shi Long Chen ◽  
Lu Luo ◽  
Yan Wu Wang

The TCR single-phase to three-phase power converter has been widely used in electrified railway system as its simple control raw and high reliability. The research on main circuit parameters and its control law is necessary to design suitable TCR single phase to three phase power converter. This paper analyses the main circuit of TCR single phase to three phase power converter, and acquires the parameters configuration theory of each element in main circuit and control law of converter when the power factor varies from 0.7 to 0.9.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 380 ◽  
Author(s):  
Nahla E. Zakzouk ◽  
Ahmed K. Abdelsalam ◽  
Ahmed A. Helal ◽  
Barry W. Williams

In this paper, a single-phase single-stage photovoltaic (PV) grid-tied system is investigated. The conventional pulse width modulated (PWM) voltage source inverter (VSI) is replaced by a PWM current source inverter (CSI) for its voltage boosting capabilities, inherent short-circuit proof and higher reliability features. Modeling, design, and analysis of the considered CSI are presented altogether with enhanced proposed control loops aided with a modified PWM technique. DC-link even current harmonics are commonly reflected as low-order odd harmonics in the grid resulting in a poor quality grid current. In order to overcome the latter, a high performance proportional resonant controller, applied in the inverter inner grid current loop, is proposed using cascaded resonant control units tuned at low-order frequencies to eliminate injected grid current harmonics. Hence, with a less-bulky smoothing inductor at the CSI DC-side, grid power quality and system efficiency are simultaneously improved. Simulation and experimental results verify the proposed controller effectiveness.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1542
Author(s):  
Hyun-Jun Lee ◽  
Dae-Shik Lee ◽  
Young-Doo Yoon

This paper proposes a new unified power flow controller (UPFC) topology. A single phase of them system with the proposed topology consists of an N:2 transformer with a center tap at the low-voltage side and a power converter module comprising full- and half-bridge converters. A three-phase system can be implemented with three devices. While the conventional UPFC topology uses two three-phase transformers, which are called series and parallel transformers, the proposed topology utilizes three single-phase transformers to implement a three-phase UPFC system. By using an autotransformer structure, the power rating of the transformers and the voltage rating of switches in the power converter module can be significantly decreased. As a result, it is possible to reduce the installation spaces and costs compared with the conventional UPFC topology. In addition, by adopting a full- and half-bridge converter structure, the proposed topology can be easily implemented with conventional power devices and control techniques. The techniques used to control the proposed topology are described in this paper. The results obtained from simulations and experiments verify the effectiveness of the proposed UPFC topology.


Author(s):  
Paiboon Kiatsookkanatorn ◽  
Napat Watjanatepin

This paper proposes a novel method to reduce voltage and current ripple for the inverters by using three-level inverters with unipolar pulse width modulation (PWM) (3LFB-2U). A simple technique of switching signal generation by using carrier-based dipolar modulation of three-phase three-level inverters is extended to single-phase inverters that can be done by generating all possible switching patterns of the single-phase three-level inverters. Moreover, the concept of carrier-based dipolar modulation and the construction of reference voltages from desired output voltage and added zero voltage to control unipolar switching is also shown. The research results reveal that the proposed method can reduce the voltage and current ripple. Furthermore, the voltage and current harmonics can reduce by 27.80% and 1.79%, respectively less than two-level inverters without a loss of a simple modulation to generate the switching signals.


Author(s):  
Hitendra Singh Thakur ◽  
Ram Narayan Patel

For the three phase power electronic and drive applications, vector control or the synchronous reference frame (SRF) based control concept is well accepted and settled amongst the research communities. Although the SRF concept has gained popularity and appreciation in developing the three phase controllers, still the concept has not reached the same level in case of a single phase system. The work presented in this paper is mainly concerned to the design of a hybrid Artificial Neural Network and Fuzzy Logic based controller for a single phase stand-alone photo-voltaic (PV) power system. The adaptive neuro fuzzy inference system (ANFIS) controller proposed in this paper is chiefly meant for improving the transient and steady state responses; for minimizing the distorting effect of the low order load current harmonics encountered particularly in case of switching the drive based inductive loads and to help maintain the inverter output voltage constant under different loading circumstances. The result obtained through simulation work, shows the effectiveness of the proposed controller as compared with the previously established research works.


Sign in / Sign up

Export Citation Format

Share Document