scholarly journals Design and Analysis of Model Predictive Control based Direct and Indirect Current strategy for Single Phase Shunt Active Power Filter

2018 ◽  
Vol 225 ◽  
pp. 05017
Author(s):  
Rameshkumar Kanagavel ◽  
V. Indragandhi ◽  
K Palanisamy

In this paper presents a comparative analysis of two control method applied to a single phase Shunt Active Power Filter (SAPF). It is about Model Predictive Control (MPC) based Direct Current Control (DCC) and Indirect Current Control (IDCC) strategy. The performances of two current control strategies were verified through a simulation with MATLABSimulink Software. Simulation results confirmed that compared to the DCC strategy, the IDCC strategy using MPC becomes simpler and need less hardware components.

2017 ◽  
Vol 65 (5) ◽  
pp. 601-607 ◽  
Author(s):  
K. Antoniewicz ◽  
K. Rafal

Abstract This paper presents model predictive control (MPC) with a finite control states set (FS) for three-level four-leg flying capacitor (FCC) converter. Principles of control method are presented and flying capacitor voltages control method is discussed. Experimental results of converter operating as a shunt active power filter (SAPF) and grid connected inverter (GCI) are shown.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1951
Author(s):  
Mihaela Popescu ◽  
Alexandru Bitoleanu ◽  
Mihaita Linca ◽  
Constantin Vlad Suru

This paper presents the use of a three-phase four-wire shunt active power filter to improve the power quality in the Department of Industrial Electronics of a large enterprise from Romania. The specificity is given by the predominant existence of single-phase consumers (such as personal computers, printers, lighting and AC equipment). In order to identify the power quality indicators and ways to improve them, an A-class analyzer was used to record the electrical quantities and energy parameters in the point of common coupling (PCC) with the nonlinear loads for 27 h. The analysis shows that, in order to improve the power quality in PCC, three goals must be achieved: the compensation of the distortion power, the compensation of the reactive power and the compensation of the load unbalance. By using the conceived three-leg shunt active power filter, controlled through the indirect current control method in an original variant, the power quality at the supply side is very much improved. In the proposed control algorithm, the prescribed active current is obtained as a sum of the loss current provided by the DC voltage and the equivalent active current of the unbalanced load. The performance associated with each objective of the compensation is presented and analyzed. The results show that all the power quality indicators meet the specific standards and regulations and prove the validity of the proposed solution.


2011 ◽  
Vol 354-355 ◽  
pp. 1390-1393 ◽  
Author(s):  
Lan Fang Li ◽  
Hong Geng Yang ◽  
Wei Ming Guo ◽  
Ya Mei Liu ◽  
Fang Wei Xu ◽  
...  

This paper proposes a nonlinear Lyapunov-based control method of the single-phase shunt active power filter (APF). The system is modeled firstly and then the compensated current of the APF is calculated. The energetic like Lyapunov function is constructed and the control output is determined through ensuring the differential of the Lyapunov function negative, which grantee the convergence of the APF system. Considering that the time-varying load may cause greater fluctuations in DC voltage, an average value is used to calculate the control output. A globally stable control is possible and it is insensitive to the parameter uncertainties and robustness to the disturbances. Simulation results are obtained using Matlab/ Simulink. These results verify the correct operation of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document