scholarly journals Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1951
Author(s):  
Mihaela Popescu ◽  
Alexandru Bitoleanu ◽  
Mihaita Linca ◽  
Constantin Vlad Suru

This paper presents the use of a three-phase four-wire shunt active power filter to improve the power quality in the Department of Industrial Electronics of a large enterprise from Romania. The specificity is given by the predominant existence of single-phase consumers (such as personal computers, printers, lighting and AC equipment). In order to identify the power quality indicators and ways to improve them, an A-class analyzer was used to record the electrical quantities and energy parameters in the point of common coupling (PCC) with the nonlinear loads for 27 h. The analysis shows that, in order to improve the power quality in PCC, three goals must be achieved: the compensation of the distortion power, the compensation of the reactive power and the compensation of the load unbalance. By using the conceived three-leg shunt active power filter, controlled through the indirect current control method in an original variant, the power quality at the supply side is very much improved. In the proposed control algorithm, the prescribed active current is obtained as a sum of the loss current provided by the DC voltage and the equivalent active current of the unbalanced load. The performance associated with each objective of the compensation is presented and analyzed. The results show that all the power quality indicators meet the specific standards and regulations and prove the validity of the proposed solution.

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 637 ◽  
Author(s):  
Amir A. Imam ◽  
R. Sreerama Kumar ◽  
Yusuf A. Al-Turki

The design of reliable power filters that mitigate current and voltage harmonics to meet the power quality requirements of the utility grid is a major requirement of present-day power systems. In this paper, a detailed systematic approach to design a shunt active power filter (SAPF) for power quality enhancement is discussed. A proportional–integral (PI) controller is adopted to regulate the DC-link voltage. The instantaneous reactive power theory is employed for the reference current’s extraction. Hysteresis current control is used to obtain the gate pulses that control the voltage source inverter (VSI) switches. The detailed SAPF is developed and simulated for balanced nonlinear loads and unbalanced nonlinear loads using MATLAB/Simulink. The simulation results indicate that the proposed filter can minimize the harmonic distortion to a level below that deployed by the Institute of Electrical and Electronics Engineers (IEEE) standards.


Author(s):  
Madhu B. R. ◽  
Dinesh M. N. ◽  
Tsewang Thinlas ◽  
Deril Menezes

Power quality is the most significant factor of power sector. The end user equipment such as induction motor, inverters, rectifiers inject harmonics into power system that influences the quality of power delivered. The presence of harmonics forces the use of instantaneous reactive power theory to calculate instantaneous power that helps in finding the compensating currents to eliminate harmonics. The control action required by active filter is accomplished by STM32F303RET6 microcontroller. Single phase induction motor is used as a dynamic nonlinear load in one of the three phases and resistive loads on the other two phases. TRIAC based RC triggering circuit was used to control the single phase induction motor. This paper presents the simulation and hardware implementation of shunt active power filter for 3 phase 4 wire unbalanced system. The hardware results show that THD in the source side has been reduced from 50.7% to 9.6% by implementing the SAPF.


2014 ◽  
Vol 721 ◽  
pp. 587-590
Author(s):  
Hai Yang Wang

Due to the rapid development of modern rapid power electronics, power system harmonics are also increasingly serious harm, in order to effectively suppress harmonics to improve power quality, active power filter APF came into being, it can be effective for reactive power and frequency, amplitude harmonic changes are real-time tracking compensation. Currently, APF power electronics technology has become a major research topic. This article describes the basic working principle of harmonic current detection method and compensation current control method, the main circuit type of active power filter.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 121 ◽  
Author(s):  
Harnek Singh ◽  
Maneet Kour ◽  
Dip Vinod Thanki ◽  
Prakash Kumar

Shunt active power filter (SAPF) has now become a well-known sophisticated technology to overcome current harmonics and reactive power compensation issues. In this paper a technical review of various control strategies for operation of SAPF has been presented. Control strategies such as reference current generation by time domain, frequency domain and soft computing approaches; voltage control for dc link voltage regulation and current control for generating switching patterns for voltage source inverter has been discussed. This paper aims to provide a broad understanding on SAPFs for various research and engineering applications.  


2021 ◽  
Vol 23 (1) ◽  
pp. 71-78
Author(s):  
Hong Li ◽  
Yang Liu ◽  
Rende Qi ◽  
Yu Ding

This paper proposes the application of a novel finite control set model predictive control (FCS-MPC) strategy in active power filter (APF). In the process of APF compensating harmonic and reactive power, the traditional single vector model predictive current control (MPCC) has low tracking accuracy to harmonic current, while the multi-vector MPCC has the problems of complex calculation and long calculation time, a new multi-vector MPCC control method has proposed in this paper. Firstly, the harmonic reference value is transformed into d-q coordinate system, according to the sector, the slope is calculated and the action time is obtained. Six new expected vectors are synthesized from six effective vectors and zero vectors. The value function is established to loop and calculate the optimal virtual vector, which is applied to APF. Compared with single vector control and traditional multi-vector control, it has a wider vector action area and faster calculation speed. The compensation results and dynamic performance are improved. The simulation results show that the total harmonic distortion (THD) is low.


2017 ◽  
Vol 2 (8) ◽  
pp. 27
Author(s):  
Ahmed Mohammed Attiya Soliman ◽  
Salah Kamal El-Sayed ◽  
M. A. Mehanna

The widespread use of power electronics in industrial, commercial and even residential electrical equipment like non-linear loads causes deterioration of the quality of the electric power supply with distortion of the supply voltage and in order to mitigate this quality the shunt active power filter (SAPF) is the suitable and effective solution for harmonic elimination and reactive power compensation and lead to power quality (PQ) improvement, therefor an effective and accurate current control technique is needed in order for a SAPF where control algorithm is the heart for SAPF to perform this function and its dynamic performance is mainly depends on these control strategy. This paper proposes three different current control strategies (CCS) based on instantaneous power theory and generalized fryze theory which used for the generation or extraction of the accurate reference current signals which comparing with the actual signals through hysteresis current technique (HCT) to produce suitable gating signals for SAPF and discusses the performance for these controllers when the supply bus voltage is distorted with scope on the efficient control algorithm. Matlab / Simulink simulation results are presented to validate the control strategy and demonstrate the effectiveness of SAPF to provide mitigation of power quality problems for non-linear load to reach an acceptable value comply with recommended standards.


Sign in / Sign up

Export Citation Format

Share Document