scholarly journals An Electromechanical Co-Simulation Model Based on Lumped Parameter Model of Ball Screw Feed Drive System

2018 ◽  
Vol 237 ◽  
pp. 03007
Author(s):  
Liang Luo ◽  
Weimin Zhang ◽  
Haonan Sui ◽  
Jürgen Fleischer

The continuous search for efficiency put forward higher requests to the machine tool for high speed and high acceleration, which makes the large-size and lightweight-designed feed drive system more likely to produce vibration during high-speed and high-acceleration feed operation. Ball screw feed system is the most widely used linear drive system in the field of industrial automation. Electromechanical Co-Simulation for ball screw feed drive dynamics is an important technique for solving vibration problems occurs in the feed motion. In view of the shortcomings of the current dynamic simulation model in the study of vibration of ball screw feed drive system, taking a ball screw feed drive system test bench as an example, an electromechanical co-simulation model based on the lumped parameter model of ball screw feed drive system was built up in this paper. Firstly, based on the axial and rotation vibration integrated dynamic modeling method of ball screws, the lumped parameter model of ball screw feed system was established. Secondly, through the integration of the simulation model of semi-closed-loop cascade control system and the lumped parameter model of ball screw feed drive system, an electromechanical co-simulation model was built up. Simulation result shows that, the co-simulation model of ball screw feed drive system can predict the vibration occurs in the feed operation caused by the servo controller, ball screw feed system or the coupling between them.

2004 ◽  
Vol 471-472 ◽  
pp. 149-154 ◽  
Author(s):  
Y.H. Choi ◽  
S.M. Cha ◽  
J.H. Hong ◽  
Jai Hyuk Choi

Feed drive system of machine tools may experience serious vibrations or unstable motions during high-speed operation. In this paper, a 6 D.O.F (Degree-Of-Freedom) lumped parameter model was proposed in order to analyze vibrations of a ball screw feed-drive system, which takes planar motion. The equations of motion were derived for the proposed model. Natural frequencies of the system and transient responses due to driving motor speed control input were also analyzed. Experimental modal analysis and operational vibration measurements of a laboratory ball screw feed drive system were made. Both theoretical analysis and experimental measurement results showed good agreement with each other. Consequently we concluded that the proposed 6 D.O.F model could be well applicable to the vibration analysis of a ball screw feed-drive system.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881235
Author(s):  
Yang Li ◽  
Jun Zhang ◽  
Dongxu Su ◽  
Changxing Zhou ◽  
Wanhua Zhao

Positioning error of the feed drive system has great influence of the machining quality. In order to guarantee the positioning accuracy, the linear grating scale is adopted to form a full-closed loop. However, due to the inner heat sources and environmental temperature variations, the linear grating scale could expand and the thermally induced positional deviation is generated. In this article, temperatures and positional deviations of the ball screw feed drive system and the linear motor feed drive system equipped with linear scales were tested. The factors that affect the positioning error were analyzed. Then, the temperatures and positioning coordinates were used as inputs to build the thermally induced positional deviation model of full closed-loop feed drive system. Based on the model, coordinate values of the machine tool were adjusted and the compensation was implemented. The testing results verified that after compensation, the positional deviations were greatly reduced.


2015 ◽  
Vol 799-800 ◽  
pp. 576-580 ◽  
Author(s):  
Yi Guang Shi ◽  
Hui Xiao ◽  
Jun Ao Zhang ◽  
Da Wei Zhang

This paper presents relationships between some vital parameters and the natural frequency of the ball screw feed drive system. A finite element model (FEM) of a machine tool feed drive system is established with joint parameters added in based on the SAMCEF software. Using the finite element model, the influences of the material properties of the worktable, the diameter of the ball screw and joint parameters on the natural frequency of axial vibration are derived. These results provide a reliable basis for the optimization design of the ball screw feed drive system.


Author(s):  
Jianmin Zhu ◽  
Tongchao Zhang ◽  
Jian Wang ◽  
Xiaoru Li

The dynamic characteristic parameters of mechanical joints are difficult to determine in theoretical modeling, dynamic simulation, and servo controller design for the ball screw feed drive system. Therefore, this study proposes a novel method for identifying the axial stiffness and damping parameters of the rolling joints in an assembled ball screw feed drive system. First, the proposed method deduces the axial vibration equations of the feed drive system with a harmonic excitation force exerted on its worktable. Second, the identification model of the axial stiffness and damping parameters of the rolling joints is established on the basis of the equations. Third, the identification equations are built by measuring the distance between the screw supporting points, the frequency, and the amplitude of the harmonic excitation force, as well as the amplitude of the axial vibration velocity of the screw end section. The axial stiffness and damping parameters of the rolling joints are finally determined by solving the identification equations using the genetic algorithm. With a ball screw feed drive system as the research object, the proposed method is used to identify the rolling joints’ axial stiffness and damping parameters of the ball screw assembly, as well as the left and the right bearing groups. The experiments show that the proposed method is correct, effective, and achieves high identification accuracy.


2020 ◽  
Vol 34 (7) ◽  
pp. 2985-2995
Author(s):  
Gaiyun He ◽  
Panpan Shi ◽  
Dawei Zhang ◽  
Guangming Sun

Author(s):  
Young H. Choi ◽  
Jin H. Hong ◽  
Sung H. Jang

In order to prevent machine tool feed slide system from transient vibrations during operation, machine tool designers usually adopt some typical design solutions; box-in-box typed feed slides, optimizing moving body for minimum weight and dynamic compliance, and so on. Despite all efforts for optimizing design, a feed drive system may experience severe transient vibrations during high-speed operation if its feed-rate control is not suitable. A rough feed-rate curve having discontinuity in its acceleration profile causes serious vibrations in the feed slides system. This paper presents a feed-rate optimization of a ball screw driven machine tool feed slide system for its minimum vibrations. A ball screw feed drive system was mathematically modeled as a 6-degree-of-freedom lumped parameter model. Then, a feed-rate optimization of the system was carried out for minimum vibrations. The main idea of the feed-rate optimization is to find out the most appropriate smooth acceleration profile having jerk continuity. A genetic algorithm, G.A., was used in this feed rate optimization.


Sign in / Sign up

Export Citation Format

Share Document