scholarly journals Effect of Rotational Speed and Flat Tool Diameter on the Zn Distribution of the Dissimilar Metals Friction Stir Spot Welded between Aluminum Alloy 5083 H321 and Galvanized Steel

2019 ◽  
Vol 269 ◽  
pp. 02004
Author(s):  
Bintang Adhi Guna ◽  
Nurul Muhayat ◽  
Triyono

Friction stir spot welding (FSSW) was developed to join the dissimilar materials as an alternative for replacing the resistance spot welding (RSW). In the case of dissimilar metals welded between aluminum and galvanized steel, Zn can decompose and diffuse in both steel and aluminum so it can increase the joint strength. Due to this reason, it is important to explore the Zn distribution based on the parameter of the friction stir spot welding. The lap joint configuration was used in this work where aluminum plate was placed on the top of steel. Aluminum thickness was 3 mm, while steel thickness was 1 mm. The constant depth of plunge, dwell time, and penetration rate were 2.7 mm, 3 seconds, and 0.9 mm/sec respectively. Flat tool with diameters of 10 mm, 12 mm and 14 mm were used for FSSW processes and for each flat tool diameter, four levels of the rotational speed of 1000 rpm, 1200 rpm, 1600 rpm and 2000 rpm were performed. The Zn distribution was evaluated using the SEM and EDS analysis. Due to the heat generation during FSSW process, materials around the tools will soften and then flow to follow the centrifugal force. The rotational speed and the flat tool diameter affected the distance and the shape of Zn diffusion flow. The distance of Zn diffusion both horizontal and vertical direction increased as increasing the rotational speed and the flat tool diameter.

Author(s):  
Sundaram Manickam ◽  
Visvalingam Balasubramanian

The present investigation is aimed at optimizing the friction stir spot welding (FSSW) process parameters such as tool rotational speed, plunge rate, dwell time and tool diameter ratio, to attain the maximum strength in dissimilar joints of AA6061 aluminum and carbon steel. Experiments were conducted according to the four factor, five level central composite rotatable design matrix. Strength of the joints was evaluated by means of single lap shear test. Optimization was done by response surface method (RSM). A maximum tensile shear fracture load (TSFL) of 9.46 kN was exhibited by a joint welded using following parameters: tool rotational speed of 1000 rpm, plunge rate of 4 mm/ min, dwell time of 5 sec and tool diameter ratio of 3.0.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4375
Author(s):  
David G. Andrade ◽  
Sree Sabari ◽  
Carlos Leitão ◽  
Dulce M. Rodrigues

Friction Stir Spot Welding (FSSW) is assumed as an environment-friendly technique, suitable for the spot welding of several materials. Nevertheless, it is consensual that the temperature control during the process is not feasible, since the exact heat generation mechanisms are still unknown. In current work, the heat generation in FSSW of aluminium alloys, was assessed by producing bead-on-plate spot welds using pinless tools. Coated and uncoated tools, with varied diameters and rotational speeds, were tested. Heat treatable (AA2017, AA6082 and AA7075) and non-heat treatable (AA5083) aluminium alloys were welded to assess any possible influence of the base material properties on heat generation. A parametric analysis enabled to establish a relationship between the process parameters and the heat generation. It was found that for rotational speeds higher than 600 rpm, the main process parameter governing the heat generation is the tool diameter. For each tool diameter, a threshold in the welding temperature was identified, which is independent of the rotational speed and of the aluminium alloy being welded. It is demonstrated that, for aluminium alloys, the temperature in FSSW may be controlled using a suitable combination of rotational speed and tool dimensions. The temperature evolution with process parameters was modelled and the model predictions were found to fit satisfactorily the experimental results.


2017 ◽  
Vol 867 ◽  
pp. 105-111
Author(s):  
S. Ramesh Babu ◽  
M. Nithin ◽  
S. Pavithran ◽  
B Parameshwaran

The Electrical Resistance Welding (ERW) of Magnesium and Aluminium is more difficult than steel because the welding machines must provide high currents and exact pressures in order to provide the heat necessary to melt the magnesium for proper fusion at the interface in order to produce a sound weld. Further, resistance welding of magnesium requires a backup plate made of steel to conduct the heat to the workpiece material. To overcome this problem, Friction Stir Spot Welding (FSSW) has been developed. In this study, the hardness distribution and the tensile shear strength of FSSW welds in the AZ31B Magnesium alloy has been investigated and it has been found that tool rotational speed and dwell time plays a major role in determining the weld strength. From the experimental study, a tool rotational speed of 1100 rpm and dwell time of 20 s produced good shear strength of 2824 N and the corresponding grain size was 4.54 μm. This result is very well supported by microstructural examinations and hardness distribution studies.


2018 ◽  
Author(s):  
Ahmed Mahgoub ◽  
Abdelaziz Bazoune ◽  
Fadi Al-Badour ◽  
Necar Merah ◽  
Abdelrahman Shuaib

In this paper, a Coupled Eulerian Lagrangian (CEL) finite element model (FEM) was developed to simulate the friction stir spot welding (FSSW) of commercial pure copper. Through simulations results, the paper presents and discusses the effect of FSSW process parameters; namely rotational speed, plunging rate and dwell time, on the developed temperatures and their distribution within the workpiece as well as material flow and deformation. Model validation showed a good agreement between predicted temperature history and the experiment one, with a maximum error of 6%. Furthermore, the predicted formation of flash was also found in good agreement with the experiment with an error of only 7%. Simulation results predicted peak temperature and plastic strain among all studied welding conditions were 920 K and 3.5 respectively at 1200 rpm rotational speed, 20 mm/min plunging rate and 4 seconds dwell time, which is approximately 70% of the melting point of pure copper.


2016 ◽  
Vol 94 ◽  
pp. 457-466 ◽  
Author(s):  
Honggang Dong ◽  
Su Chen ◽  
Yang Song ◽  
Xin Guo ◽  
Xiaosheng Zhang ◽  
...  

Author(s):  
Ahmed Mahgoub ◽  
Neçar Merah ◽  
Abdelaziz Bazoune

Abstract Friction Stir Spot Welding (FSSW) is a solid-state joining technique widely applied to high conductive metals. In this paper, the effects of FSSW parameters, namely, rotational speed (N), plunging rate (V) and dwell time (DT) on the joint fracture mode and fractured surface morphology were investigated using scanning electron microscopy (SEM). The effect of the abovementioned welding parameters on the microhardness profile along the sheets’ interface was also investigated to gain insight into the strength of the joint and the width of the bonding ligament. Two conditions were considered for each parameter 1200 rpm and 900 rpm for N, 60 mm/min and 20 mm/min for V, 4 and 2 seconds for DT. The welding condition 1200 rpm rotational speed, 20 mm/min plunging rate and 2 seconds dwell time showed a wider bonding ligament, relatively higher elongation, higher tensile failure load, and greater microhardness on the sheets’ interface. Dimple surface morphology (DSM) with regular dimples along the stir zone was also observed at the abovementioned set of process parameters.


Sign in / Sign up

Export Citation Format

Share Document