scholarly journals Viscous-flow-based investigation of Cloaking phenomenon among multi-floating bodies and experimental verification

2019 ◽  
Vol 272 ◽  
pp. 01016
Author(s):  
Z K Wang ◽  
G H He ◽  
Z G Zhang ◽  
Y H Meng

The safety of mooring systems on offshore platforms seems more and more significant with the utilization of offshore space and resources, so the reduction of wave drift force is the key issue in this wave-body interaction problem. The wave drift force acting on the inner floating body surrounded by multiple small floating bodies can be reduced obviously with the occurrence of a phenomenon, which is called the Cloaking phenomenon. The Cloaking phenomenon refers to the reduction or complete elimination in amplitude of the scattered waves. In this paper, a real-coded genetic algorithm was used to optimize the parameters of outer floating bodies to minimize the scattered wave energy, and then the wave drift force acting on the inner body can be reduced. Furthermore, associated CFD simulations and experimental research were conducted with the above optimized parameters to investigate and verify the Cloaking phenomenon more systemically. It is shown that the wave drift force acting on the inner floating body in the Cloaking configuration can be reduced obviously both in numerical and experimental research, and the reduction of the wave drift force is closely related to the change of wave field around the structure.

Author(s):  
Zhigang Zhang ◽  
Guanghua He ◽  
Xiaoqun Ju ◽  
Dong Yu

Mooring offshore floating structures such as offshore platforms in large waves and winds, against the drift force and rotational moments are challenging in offshore engineering and ocean engineering. To investigate these kind of problems named positioning problems accurately, not only in hydrodynamic forces of first order but also in time-averaged steady forces of second order named wave drift force need to be taken into account. That arranging of several small cylinders regularly on a circle concentric with a fixed floating body is considered to reduce the wave drift force. Fortunately, a Cloaking phenomenon occurs at certain conditions with proper geometrical dimensions of floating bodies, which can reduce the wave drift force acting on bodies, perfectly even to zero. In this paper, with a combination of higher-order boundary element method (HOBEM) and wave-interaction theory, the influences of geometrical parameters of outer surrounding cylinders on the wave drift force of floating bodies are systematically investigated and discussed.


Author(s):  
Bernard Molin ◽  
Jean-Baptiste Lacaze

The horizontal wave drift force acting on a vertical floating column, without then with a heave plate, is considered. Computations are performed with a diffraction-radiation code and through the Morison and Rainey equations. Focus is on wave frequencies around the heave resonance where the drift force may be significant, even though the scattered wave-field being weak. It is found that the Morison equation overpredicts the drift force while Rainey equations perform rather well.


2012 ◽  
Vol 697 ◽  
pp. 316-335 ◽  
Author(s):  
Paul D. Sclavounos

AbstractA new formulation is presented of the nonlinear loads exerted on floating bodies by steep irregular surface waves. The forces and moments are expressed in terms of the time derivative of the fluid impulse which circumvents the time-consuming computation of the temporal and spatial derivatives in Bernoulli’s equation. The nonlinear hydrostatic force on a floating body is shown to point vertically upwards and the nonlinear Froude–Krylov force and moment are derived as the time derivative of an impulse that involves the time derivative of a simple integral of the ambient velocity potential over the time-dependent body wetted surface. The nonlinear radiation and diffraction forces and moments are expressed as time derivatives of two impulses, a body impulse and a free surface impulse that represents higher-order wave loads acting along the body waterline. Numerical results are presented illustrating the accuracy of the new force expressions. Applications discussed include the nonlinear seakeeping of ships and offshore platforms and the extreme wave loads and responses of offshore wind turbines.


2005 ◽  
Vol 127 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Motoki Yoshida ◽  
Takeshi Kinoshita ◽  
Weiguang Bao

Wave-drift added mass results from nonlinear interactions between waves and low-frequency oscillatory motions of a floating body, in the presence of incident waves. In previous works, wave-drift damping which is the component of wave-drift force in phase with the velocity of low-frequency oscillations was investigated mainly based on a quasi-steady analysis. However, investigations related to wave-drift added mass, the component in phase with acceleration, were very few. In this paper, wave-drift added mass is derived directly from a perturbation analysis with two small parameters and two time scales, using a Cartesian coordinate system that follows the low-frequency oscillations, dynamic oscillation model has been used. Especially, the method to solve higher-order potentials, which are necessary for evaluation of wave-drift added mass, is presented. Analytical solutions and calculated results of wave-drift added mass, and far field radiation conditions for each order of potentials are obtained. Also, wave-drift added mass of floating bodies has been systematically measured from a slowly forced oscillation test or a free decay test in waves. Experimental results are compared with calculated results. Then, for a supplement, the secular behavior that some velocity potentials show is discussed. Applying a multiple scale perturbation analysis to one of these problems, a nonsecular solution is obtained.


Author(s):  
Takashi Tsubogo

This paper provides the reciprocal form on wave drift force and moment from the momentum theory. The author in Japan has transformed from the pressure integration on the wetted body surface oscillating in regular waves into the reciprocal form at the near field, then transformed into the form at the far field owing to Green’s second identity, and transformed into Maruo’s and Newman’s formulas. But in this paper the start point is the momentum theory and the goal is the reciprocal form. The obtained reciprocal form at the far field can be transformed into the integration over the wetted floating body surface owing to Green’s second identity.


2018 ◽  
Vol 71 ◽  
pp. 1-10 ◽  
Author(s):  
Zhigang Zhang ◽  
Guanghua He ◽  
Masashi Kashiwagi ◽  
Zhengke Wang

2021 ◽  
Author(s):  
Lei Tan ◽  
Tomoki Ikoma ◽  
Yasuhiro Aida ◽  
Koichi Masuda

Abstract The barge-type foundation with moonpool(s) is a promising type of platform for floating offshore wind turbines, since the moonpool(s) could improve the hydrodynamic performance at particular frequencies and reduce the costs of construction. In this paper, the horizontal mean drift force and yaw drift moment of a barge-type platform with four moonpools are numerically and experimentally investigated. Physical model tests are carried out in a wave tank, where a 2MW vertical-axis wind turbine is modelled in the 1:100 scale. By varying the rotating speed of the turbine and the mass of the blades, the gyroscopic effects due to turbine rotations on the mean drift forces are experimentally examined. The wave diffraction and radiation code WAMIT is used to carry out numerical analysis of wave drift force and moment. The experimental results indicate that the influence of the rotations of a vertical-axis wind turbine on the sway drift force is generally not very significant. The predictions by WAMIT are in reasonable agreement with the measured data. Numerical results demonstrate that the horizontal mean drift force and yaw drift moment at certain frequencies could be reduced by moonpool(s).


1991 ◽  
Vol 28 (03) ◽  
pp. 153-162
Author(s):  
Antonio Campanile

The paper presents a computer-based approach aiming to solve the equilibrium equations of a floating body by means of potential-energy minimization. After a brief and general discussion, the principle that the potential energy of the system must be at a minimum is adopted as the condition for identifying the stable equilibrium positions of a marine vehicle. A consistent mathematical formulation is then developed. The problem is solved, therefore, by searching for the minimum of a function of three variables using a simple and efficient iterative method. This makes it possible for the equilibrium positions to be determined directly, unlike the classic methods-that is, without any previously constructed table of hydrostatic data and regardless of the magnitude of waterplane rotation compared with the initial orientation. No restriction is stipulated on hull form. Some study cases relating to a prismatic barge and a jacket-type platform are presented and analyzed. Relevant numerical results allow the procedure to be optimized so as to improve convergence. Finally, peculiar features of the proposed method are discussed, with particular reference to jacket-type offshore platforms, and further valuable applications are indicated.


Sign in / Sign up

Export Citation Format

Share Document