scholarly journals Development of high strength self-compacting fibre reinforced concrete for prefabricated concrete industry

2019 ◽  
Vol 275 ◽  
pp. 02011
Author(s):  
Estela O. Garcez ◽  
Muhammad I. Kabir ◽  
Mahbube Subhani ◽  
Alastair MacLeod ◽  
Andras Fehervari ◽  
...  

Prefabricated construction is an emerging industry in Australia and considered a key mechanism to boost productivity in the construction industry. The use of fibre reinforced concrete has a huge potential in the prefabricated industry as the concrete can be delivered straight to the precast mould, eliminating in many cases the steel reinforcement, thus increasing production quotas and cost savings. Such results can be further improved by utilising self-compacting concrete reinforced with fibres. Although the use of steel fibres as reinforcement is now well established, in the precast industry thin walls and shape of the moulds can be a limitation to steel fibre as well as work health and safety concerns for handling. Under such conditions, the use of polymeric fibres can be extremely beneficial, reducing labour hours and placement time as well as improving safety. This paper reports the development of high strength self-compacting fibre reinforced concrete for application in prefabricated concrete industry, exploring the effect of Forta-Ferro and ReoShore fibres on concrete fresh and mechanical properties.

2007 ◽  
Vol 15 (7) ◽  
pp. 569-578 ◽  
Author(s):  
Jong-Pil Won ◽  
Chan-Gi Park ◽  
Hwang-Hee Kim ◽  
Sang-Woo Lee ◽  
Cheol Won

Current design trends for structures require the increased use of high-strength concrete, which has a compressive strength of over 80 MPa. Its enhanced strength, however, leads to brittle failure problems, which have been resolved by adding steel fibres. Fibre-reinforced polymer (FRP) is actively being studied to resolve the corrosion problems encountered with steel reinforcing bars in concrete structures exposed to adverse environmental conditions. In this study, we experimentally evaluated the bond behaviour of FRP reinforcing bars in high-strength steel fibre-reinforced concrete. A high-strength concrete mix was created with a target strength of over 80 MPa, and steel fibre was added. The FRP reinforcing bars had an increased pullout load with a slow gradient, and the slope of the pullout load reduction curve remained small after the maximum pullout load was reached. In addition, the bond strength increased as steel fibre was added to the FRP reinforcing bar.


Sign in / Sign up

Export Citation Format

Share Document