scholarly journals Research on improving measurement accuracy of acoustic transfer function of underwater vehicle

2021 ◽  
Vol 336 ◽  
pp. 01006
Author(s):  
Jiangqiao Li ◽  
Li Jiang ◽  
Fujian Yu ◽  
Ye Zhang ◽  
Kun Gao

To address the problem that acoustic transfer functions with underwater platforms cannot be measured accurately, this paper presents a method based on phase compensation to improve the accuracy of acoustic transfer function measurements on underwater platforms. The time-domain impulse response signals with multiple cycles are first collected and intercepted, and then their phase differences are estimated using the least-squares method, and phase compensation is used to align the phases of all the signals, and then the impulse response signals are weighted and averaged over all the impulse response signals to cancel out the random noise. The water pool test proves that this method reduces the measurement random noise while obtaining a high-fidelity time domain transfer function, which effectively improves the signal-to-noise ratio of the measurement. The method adopts only one measurement signal, and without changing the measurement system, the random noise is cancelled out by the in-phase superposition of the multi-cycle impulse response signals to avoid the nonlinear distortion of the measurement results.

Geophysics ◽  
1972 ◽  
Vol 37 (6) ◽  
pp. 1005-1021 ◽  
Author(s):  
G. Kunetz

A few methods in the processing and interpretation of magnetotelluric soundings over a stratified earth are investigated, with emphasis on the less commonly used time‐domain procedures. Analytical expressions of the theoretical transfer function between the magnetic‐ and electric‐field variations, both in frequency and time domain, are derived. Their properties are studied, and recursive algorithms are given for their numerical computation. On the other hand, a procedure is outlined which leads directly in the time domain to the experimental values of this transfer function. It is similar to the methods used in seismic analysis for signal determination and makes use of the auto‐ and crosscorrelation functions of the measured field variations. Finally, methods of interpretation, based either on a visual or on an automatic comparison of these theoretical and experimental transfer functions, are proposed. For the case of automatic interpretation, complementary geologic data should be used where possible to take care of the lack of uniqueness of the solution.


2020 ◽  
Author(s):  
Gopikrishna Madanan ◽  
Deepti Das Krishna

The performance of printed wideband antennas has to be optimized both in frequency and time domains, to qualify for UWB applications. This is especially true in multi-resonant antenna topologies where the excitation of different modes can change phase centers and radiation patterns with frequency. The study presented in this chapter intends to demonstrate the simulation and experimental design for the time domain characterization of UWB antennas. Modeling the antenna as a linear time-invariant system with transfer function and impulse response, distortion caused to a nanosecond pulse is analyzed. Two planar monopole antenna designs are considered for the comparative study: the SQMA and RMA. SQMA is a traditional CPW-fed monopole design with ground modifications for ultra wide-bandwidth. RMA is a rectangular CPW-fed monopole with an impedance transformer arrangement at the antenna feed. RMA maintains constant impedance over the entire UWB and contributes towards maintaining uniformity in the radiation patterns over the entire frequency band by its design. Transfer function measurements are performed for both the azimuthal and elevation planes and the impulse responses are deduced by performing IFFT. Parameters such as FWHM and ringing are computed from the impulse response for the performance comparison. To evaluate the influence of the antenna geometry on a transmitted/received pulse, the impulse responses are convoluted with a standard UWB pulse. The time-domain distortion for the designs is then compared by computing the Fidelity parameter.


2000 ◽  
Vol 178 ◽  
pp. 595-605 ◽  
Author(s):  
Toshio Fukushima ◽  
Toshimichi Shirai

AbstractWe developed a numerical method to incorporate nonrigid effects into a nutation theory of the rigid Earth. Here we assume that the nonrigid effects are based on a linear response theory and its transfer function is expressed as a rational function of frequency. The method replaces the convolution of the transfer function in the frequency domain by the corresponding integro-differential operations in the time domain numerically; namely multiplying the polynomial in the frequency domain by the numerical differentiations in the time domain and multiplying the fractions in the frequency domain by the numerical integrations with a suitable kernel in the time domain. In replacing by the integrations, the method requires the determination of the coefficients of free oscillation. This is done by a least-squares method to fit the theory incorporated with the nonrigid effects to the observational data, whose availability is also assumed. The numerical differentiation and integration are effectively computed by means of the symmetric formulas of differentiation and integration. Numerical tests showed that the method is sufficiently precise to reproduce the analytically convolved nutation at the level of 10 nano arcseconds by using the 9-point central difference formulas and the 8-point symmetric integration formula to cover the period of 15 years with 1.5-hour stepsize. Since we only require the rigid Earth nutation theory to be expressed as a numerical table of time, this method enables one to create a purely numerical theory of nutation of the nonrigid Earth.


2020 ◽  
Vol 12 ◽  
pp. 175682772093049
Author(s):  
Sreenath M Gopinathan ◽  
Alessandra Bigongiari ◽  
Maria Heckl

This paper focusses on the relationship between the heat release rate and the acoustic field, which is a crucial element in modelling thermoacoustic instabilities. The aim of the paper is twofold. The first aim is to develop a transformation tool, which makes it easy to switch between the time-domain representation (typically a heat release law involving time-lags) and the frequency-domain representation (typically a flame transfer function) of this relationship. Both representations are characterised by the same set of parameters n1, n2, …, nk. Their number is quite small, and they have a clear physical meaning: they are time-lag dependent coupling coefficients. They are closely linked to the impulse response of the flame in the linear regime in that they are proportional to the discretised (with respect to time) impulse response. In the nonlinear regime, the parameters n1, n2, …, nk become amplitude-dependent. Their interpretation as time-lag dependent coupling coefficients prevails; however, the link with the impulse response is lost. Nonlinear flames are commonly described in the frequency-domain by an amplitude-dependent flame transfer function, the so-called flame describing function. The time-domain equivalent of the flame describing function is sometimes mistaken for a ‘nonlinear impulse response’, but this is not correct. The second aim of this paper is to highlight this misconception and to provide the correct interpretation of the time-domain equivalent of the flame describing function.


Author(s):  
Mingjie Zhang ◽  
Ole Øiseth

AbstractA convolution-based numerical algorithm is presented for the time-domain analysis of fluidelastic instability in tube arrays, emphasizing in detail some key numerical issues involved in the time-domain simulation. The unit-step and unit-impulse response functions, as two elementary building blocks for the time-domain analysis, are interpreted systematically. An amplitude-dependent unit-step or unit-impulse response function is introduced to capture the main features of the nonlinear fluidelastic (FE) forces. Connections of these elementary functions with conventional frequency-domain unsteady FE force coefficients are discussed to facilitate the identification of model parameters. Due to the lack of a reliable method to directly identify the unit-step or unit-impulse response function, the response function is indirectly identified based on the unsteady FE force coefficients. However, the transient feature captured by the indirectly identified response function may not be consistent with the physical fluid-memory effects. A recursive function is derived for FE force simulation to reduce the computational cost of the convolution operation. Numerical examples of two tube arrays, containing both a single flexible tube and multiple flexible tubes, are provided to validate the fidelity of the time-domain simulation. It is proven that the present time-domain simulation can achieve the same level of accuracy as the frequency-domain simulation based on the unsteady FE force coefficients. The convolution-based time-domain simulation can be used to more accurately evaluate the integrity of tube arrays by considering various nonlinear effects and non-uniform flow conditions. However, the indirectly identified unit-step or unit-impulse response function may fail to capture the underlying discontinuity in the stability curve due to the prespecified expression for fluid-memory effects.


1992 ◽  
Vol 24 (02) ◽  
pp. 412-440 ◽  
Author(s):  
Lennart Ljung ◽  
Bo Wahlberg

The problem of estimating the transfer function of a linear system, together with the spectral density of an additive disturbance, is considered. The set of models used consists of linear rational transfer functions and the spectral densities are estimated from a finite-order autoregressive disturbance description. The true system and disturbance spectrum are, however, not necessarily of finite order. We investigate the properties of the estimates obtained as the number of observations tends to ∞ at the same time as the model order employed tends to ∞. It is shown that the estimates are strongly consistent and asymptotically normal, and an expression for the asymptotic variances is also given. The variance of the transfer function estimate at a certain frequency is related to the signal/noise ratio at that frequency and the model orders used, as well as the number of observations. The variance of the noise spectral estimate relates in a similar way to the squared value of the true spectrum.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3985 ◽  
Author(s):  
Siyu Chen ◽  
Yanzhang Wang ◽  
Jun Lin

Residence time difference (RTD) fluxgate sensor is a potential device to measure the DC or low-frequency magnetic field in the time domain. Nevertheless, jitter noise and magnetic noise severely affect the detection result. A novel post-processing algorithm for jitter noise reduction of RTD fluxgate output strategy based on the single-frequency time difference (SFTD) method is proposed in this study to boost the performance of the RTD system. This algorithm extracts the signal that has a fixed frequency and preserves its time-domain information via a time–frequency transformation method. Thereby, the single-frequency signal without jitter noise, which still contains the ambient field information in its time difference, is yielded. Consequently, compared with the traditional comparator RTD method (CRTD), the stability of the RTD estimation (in other words, the signal-to-noise ratio of residence time difference) has been significantly boosted with sensitivity of 4.3 μs/nT. Furthermore, the experimental results reveal that the RTD fluxgate is comparable to harmonic fluxgate sensors, in terms of noise floor.


2003 ◽  
Vol 13 (11) ◽  
pp. 3395-3407 ◽  
Author(s):  
F. A. SAVACI ◽  
M. E. YALÇIN ◽  
C. GÜZELIŞ

In this paper, nonlinearly coupled identical Chua's circuits, when driven by sinusoidal signal have been analyzed in the time-domain by using the steady-state analysis techniques of piecewise-linear dynamic systems. With such techniques, it has become possible to obtain analytical expressions for the transfer functions in terms of the circuit parameters. The proposed system under consideration has also been studied by analog simulations of the overall system on a hardware realization using off-the-shelf components as well as by a time-domain analysis of the synchronization error.


Sign in / Sign up

Export Citation Format

Share Document