Production and characterization of TiO2 nanoparticle thin films for its application in DSSCs

2020 ◽  
Vol 117 (6) ◽  
pp. 622
Author(s):  
Saranyoo Chaiwichian ◽  
Sumneang Lunput

In this research, TiO2 nanoparticle thin films were successfully prepared on FTO glass substrates through a doctor blade technique, and its application was tested in dye-sensitized solar cells (DSSCs) with different sensitizing dyes such as methylene blue (MB) and methyl orange (MO). The physicochemical properties of intended thin films were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and UV-vis diffuse reflectance spectra (UV-vis DRS) techniques. The experimental results revealed that dipped TiO2 nanoparticle thin films into MB dye solution showed a higher photovoltaic efficiency (1.45%) when compared with the MO dye solution. A reasonable mechanism of DSSCs was also proposed.

2015 ◽  
Vol 1131 ◽  
pp. 215-220
Author(s):  
Emmanuel Nyambod Timah ◽  
Buagun Samran ◽  
Udom Tipparach

TiO2nanotubes were successfully synthesized by anodization method of Ti foils. The electrolyte was composed of ethylene glycol (EG), ammonium fluoride (0.3%wt NH4F) and de-ionized water (2% vol H2O). A constant DC power supply of 50 V was used during anodization with anodizing times of 1 hour, 2 hours, 4 hours and 6 hours. The samples were annealed at 450 °C for 2 hours. The TiO2nanotubes were studied by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Structural analysis revealed the presence of pure Ti, and the crystalline anatase phase due to transformation of amorphous TiO2after annealing. The morphology of TiO2nanotube sizes showed an increase in tube diameter with anodizing time from approximately 50 nm to 200 nm. However, the efficiency of dye-sensitized solar cells increased with anodizing times up to a maximum of 5.74 % for anodizing time of 4 hours.


2008 ◽  
Vol 55-57 ◽  
pp. 645-648
Author(s):  
Phathaitep Raksa ◽  
A. Gardchareon ◽  
N. Mangkorntong ◽  
Supab Choopun

CuO nanostructures were synthesized by oxidizing copper thin films. The copper thin film was grown on alumina substrates by evaporation copper powder at pressure of 0.04 mtorr. The copper thin films were then oxidized 800, and 900oC for 12, 24 and 48 hr, respectively. The obtained CuO nanostructures were investigated by Energy Dispersive Spectroscopy (EDS), Field Emission Scanning Electron Microscope (FE-SEM) image, and X-Ray Diffraction (XRD). The diameter of CuO nanostructure is around 100-600 nanometers and it is depends on oxidation reaction time and temperature. These CuO nanostructures have a potential application for nanodevices such as nano gas sensor or dye-sensitized solar cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Zeng Chen ◽  
Shengjun Li ◽  
Weifeng Zhang

Bismuth titanate (Bi4Ti3O12) particles were synthesized by hydrothermal treatment and nanoporous thin films were prepared on conducting glass substrates. The structures and morphologies of the samples were examined with X-ray diffraction and scanning electron microscope (SEM). Significant absorbance spectra emerged in visible region which indicated the efficient sensitization of Bi4Ti3O12with N3 dye. Surface photovoltaic properties of the samples were investigated by surface photovoltage. The results further indicate that N3 can extend the photovoltaic response range of Bi4Ti3O12nanoparticles to the visible region, which shows potential application in dye-sensitized solar cell. As a working electrode in dye-sensitized solar cells (DSSCs), the overall efficiency reached 0.48% after TiO2modification.


2021 ◽  
Author(s):  
Deniz ÇOBAN ÖZKAN ◽  
Ahmet Türk ◽  
Erdal Celik

Abstract The present research demonstrates the synthesis and characterization of LaMnO3 perovskite powders using the sol-gel technique for dye-sensitive solar cell applications. With this respect, transparent solutions were prepared from La and Mn based precursors, distilled water and citric acid monohydrate. Ammonium hydroxide was incorporated into the La-Mn solution in order to neutralize/precipitate at 24oC for 1 hour in the air. The solution was allowed to evaporate on a hot plate device at 90 °C in the air. The obtained solutions were dried at 90 oC for 24 hours to form a xerogel structure, dried at 200 oC for 2 hours and consequently annealed at 500 and 850 oC for 2 hours in the air. Thermal, structural, microstructural, optical and magnetic properties of the powders were characterized through differential thermal analysis-thermogravimetry (DTA-TG), Fourier transform infrared (FTIR), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), scanning electron microscopy (SEM), Malvern zeta sizer (PSD), UV-vis spectrometer and vibrating sample magnetometer (VSM). The obtained results indicate promise, especially the low band range, that LaMnO3 powders can be used in dye-sensitized solar cells and can positively affect performance and efficiency.


2010 ◽  
Vol 305-306 ◽  
pp. 33-37 ◽  
Author(s):  
S. Lallouche ◽  
M.Y. Debili

This work deals with Al-Cu thin films, deposited onto glass substrates by RF (13.56MHz) magnetron sputtering, and annealed at 773K. The film thickness was approximately the same 3-4µm. They are characterized with respect to microstructure, grain size, microstrain, dislocation density and resistivity versus copper content. Al (Cu) deposits containing 1.8, 7.21, 86.17 and 92.5at%Cu have been investigated. The use of X-ray diffraction analysis and transmission electron microscopy lead to the characterization of different structural features of films deposited at room temperature (< 400K) and after annealing (773K). The resistivity of the films was measured using the four-point probe method. The microstrain profile obtained from XRD thanks to the Williamson-Hall method shows an increase with increasing copper content.


2014 ◽  
Vol 953-954 ◽  
pp. 128-131 ◽  
Author(s):  
Xiu Fang Wang ◽  
Ya Han Wu ◽  
Cai Xia Yang ◽  
Meng Jun Yuan ◽  
Yan Huo ◽  
...  

Upconversion NaYF4:Yb3+Er3+@TiO2 are synthesized and used to compose the photoelectrode (PE) of dye-sensitized solar cells (DSSCs). The morphology, structure, photoluminescence characterization of the NaYF4:Yb3+, Er@TiO2 and the photoelectric performance, alternating current impedance spectroscopy of DSSCs are characterized using transmission electron microscopy, CHI660C electrochemical analyzer, 720 nm long wave pass filter, the infrared laser light, upconversion spectra. Comparing the output power of the DSSC with upconversion performance at different annealing temperatures, the DSSCs under annealing temperature (330°C) show a better photovoltaic efficiency.


2013 ◽  
Vol 117 (33) ◽  
pp. 17033-17038 ◽  
Author(s):  
Mitsunori Honda ◽  
Masatoshi Yanagida ◽  
Liyuan Han ◽  
Kenjiro Miyano

2013 ◽  
Vol 743-744 ◽  
pp. 910-914
Author(s):  
Ting Han ◽  
Geng Rong Chang ◽  
Yun Jin Sun ◽  
Fei Ma ◽  
Ke Wei Xu

Si/C multilayer thin films were prepared by magnetron sputtering and post-annealing in N2 atmosphere at 1100 for 1h. X-ray diffraction (XRD), Raman scattering and high-resolution transmission electron microscopy (HRTEM) were applied to study the microstructures of the thin films. For the case of Si/C modulation ratio smaller than 1,interlayer diffusion is evident, which promotes the formation of α-SiC during thermal annealing. If the modulation ratio is larger than 1, the Si sublayers are partially crystallized, and the thicker the Si sublayers are, the crystallinity increases. To be excited, brick-shaped nc-Si is directly observed by HRTEM. The brick-shaped nc-Si appears to be more regular near the Si (100) substrate but with twin defects. The results are instructive in the application of solar cells.


2008 ◽  
Vol 19 (48) ◽  
pp. 485707 ◽  
Author(s):  
D Paul Joseph ◽  
M Saravanan ◽  
B Muthuraaman ◽  
P Renugambal ◽  
S Sambasivam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document