scholarly journals Tutte’s invariant approach for Brownian motion reflected in the quadrant

2017 ◽  
Vol 21 ◽  
pp. 220-234 ◽  
Author(s):  
S. Franceschi ◽  
Kilian Raschel

We consider a Brownian motion with negative drift in the quarter plane with orthogonal reflection on the axes. The Laplace transform of its stationary distribution satisfies a functional equation, which is reminiscent from equations arising in the enumeration of (discrete) quadrant walks. We develop a Tutte’s invariant approach to this continuous setting, and we obtain an explicit formula for the Laplace transform in terms of generalized Chebyshev polynomials.

2009 ◽  
Vol 46 (2) ◽  
pp. 593-600 ◽  
Author(s):  
Svante Janson ◽  
Niclas Petersson

In this paper we study the integral of the supremum process of standard Brownian motion. We present an explicit formula for the moments of the integral (or area)(T) covered by the process in the time interval [0,T]. The Laplace transform of(T) follows as a consequence. The main proof involves a double Laplace transform of(T) and is based on excursion theory and local time for Brownian motion.


1987 ◽  
Vol 1 (4) ◽  
pp. 405-416 ◽  
Author(s):  
Laurence A. Baxter ◽  
Eui Yong Lee

A model for a system whose state changes continuously with time is introduced. It is assumed that the system is modeled by Brownian motion with negative drift and an absorbing barrier at the origin. A repairman arrives according to a Poisson process and increases the state of the system by a random amount if the state is below a threshold α. Explicit expressions are deduced for the distribution function of X(t), the state of the system at time 1, if X(t) ≤ α and for the Laplace transform of the density of X( t). The stationary case is examined in detail.


2009 ◽  
Vol 46 (02) ◽  
pp. 593-600
Author(s):  
Svante Janson ◽  
Niclas Petersson

In this paper we study the integral of the supremum process of standard Brownian motion. We present an explicit formula for the moments of the integral (or area)(T) covered by the process in the time interval [0,T]. The Laplace transform of(T) follows as a consequence. The main proof involves a double Laplace transform of(T) and is based on excursion theory and local time for Brownian motion.


2001 ◽  
Vol 33 (1) ◽  
pp. 223-241 ◽  
Author(s):  
Daniel Dufresne

This paper is about the probability law of the integral of geometric Brownian motion over a finite time interval. A partial differential equation is derived for the Laplace transform of the law of the reciprocal integral, and is shown to yield an expression for the density of the distribution. This expression has some advantages over the ones obtained previously, at least when the normalized drift of the Brownian motion is a non-negative integer. Bougerol's identity and a relationship between Brownian motions with opposite drifts may also be seen to be special cases of these results.


2011 ◽  
Vol 48 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Angelos Dassios ◽  
Shanle Wu

In this paper we study the excursion time of a Brownian motion with drift outside a corridor by using a four-state semi-Markov model. In mathematical finance, these results have an important application in the valuation of double-barrier Parisian options. We subsequently obtain an explicit expression for the Laplace transform of its price.


2020 ◽  
pp. 2150031
Author(s):  
Shiyu Song

In this paper, we study the joint Laplace transform of the sticky Brownian motion on an interval, its occupation time at zero and its integrated process. The perturbation approach of Li and Zhou [The joint Laplace transforms for diffusion occupation times, Adv. Appl. Probab. 45 (2013) 1049–1067] is adopted to convert the problem into the computation of three Laplace transforms, which is essentially equivalent to solving the associated differential equations with boundary conditions. We obtain the explicit expression for the joint Laplace transform in terms of the modified Bessel function and Airy functions.


2015 ◽  
Vol 52 (1) ◽  
pp. 191-208 ◽  
Author(s):  
David Landriault ◽  
Bin Li ◽  
Hongzhong Zhang

Drawdowns measuring the decline in value from the historical running maxima over a given period of time are considered as extremal events from the standpoint of risk management. To date, research on the topic has mainly focused on the side of severity by studying the first drawdown over a certain prespecified size. In this paper we extend the discussion by investigating the frequency of drawdowns and some of their inherent characteristics. We consider two types of drawdown time sequences depending on whether a historical running maximum is reset or not. For each type we study the frequency rate of drawdowns, the Laplace transform of the nth drawdown time, the distribution of the running maximum, and the value process at the nth drawdown time, as well as some other quantities of interest. Interesting relationships between these two drawdown time sequences are also established. Finally, insurance policies protecting against the risk of frequent drawdowns are also proposed and priced.


2003 ◽  
Vol 35 (1) ◽  
pp. 159-183 ◽  
Author(s):  
Michael Schröder

This paper studies the law of any real powers of the integral of geometric Brownian motion over finite time intervals. As its main results, an apparently new integral representation is derived and its interrelations with the integral representations for these laws originating by Yor and by Dufresne are established. In fact, our representation is found to furnish what seems to be a natural bridge between these other two representations. Our results are obtained by enhancing the Hartman-Watson Ansatz of Yor, based on Bessel processes and the Laplace transform, by complex analytic techniques. Systematizing this idea in order to overcome the limits of Yor's theory seems to be the main methodological contribution of the paper.


2013 ◽  
Vol 50 (1) ◽  
pp. 295-299 ◽  
Author(s):  
Adam Metzler

In this note we compute the Laplace transform of hitting times, to fixed levels, of integrated geometric Brownian motion. The transform is expressed in terms of the gamma and confluent hypergeometric functions. Using a simple Itô transformation and standard results on hitting times of diffusion processes, the transform is characterized as the solution to a linear second-order ordinary differential equation which, modulo a change of variables, is equivalent to Kummer's equation.


1968 ◽  
Vol 58 (3) ◽  
pp. 1083-1096 ◽  
Author(s):  
Edgar A. Kraut

abstract The problem of calculating the reflected and diffracted elastic waves generated when a plane compressional wave strikes a rigid quarter plane is formulated as a Wiener-Hopf problem in two complex variables. It is shown how a closed form solution of this two variable Wiener-Hopf problem can be obtained provided that the Laplace transform of the elastic wave Green's function can be factorized into factors having suitable analytic properties.


Sign in / Sign up

Export Citation Format

Share Document