A neoteric approach to geometric shipment policy in an integrated supply chain with setup cost reduction and freight cost using service level constraint

2020 ◽  
Vol 54 (3) ◽  
pp. 653-673
Author(s):  
Selvaraj Hemapriya ◽  
Ramasamy Uthayakumar

This paper explores a neoteric approach to geometric shipment policy and concerns the impact of controllable lead time, setup cost reduction, lost sales caused by stock-out and freight cost within an integrated vendor–buyer supply chain configuration using service-level constraint. In particular, the transportation cost is a function of shipping weight, distance and transportation modes. In other words, truckload (TL) and less-than-truckload (LTL) shipments. A heuristic model is developed to minimize the joint expected total cost (JETC), when the mode of transportation is limited to TL and LTL shipments. Numerical examples including the sensitivity analysis with some managerial insights of system parameters is implemented to endorse the outcome of the supply chain models.

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3733 ◽  
Author(s):  
Irfanullah Khan ◽  
Jihed Jemai ◽  
Han Lim ◽  
Biswajit Sarkar

The need for efficient electrical energy consumption has greatly expanded in the process industries. In this paper, efforts are made to recognize the electrical energy consumption in a two-echelon supply chain model with a stochastic lead-time demand and imperfect production, while considering the distribution free approach. The initial investments are made for quality improvement and setup cost reduction, which ultimately reduce electrical energy consumption. The inspection costs are considered in order to ensure the good qualities of the product. Centralized and decentralized strategies are used to analyze the proposed supply chain model. The main objective of this study is to reduce the overall cost through efficient electrical energy consumption in supply chain management by optimizing the lot size, the number of shipments, the setup cost, and the failure rate. A quantity-based transportation discount policy is applied to reduce the expected annual costs, and a service-level constraint is incorporated for the buyer to avoid a stockout situation. The impact of the decision variables on the expected total costs is analyzed, and sensitivity analysis is carried out. The results show a significant reduction in overall cost, with quality improvement and setup cost reduction ultimately reducing electrical energy consumption.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 328 ◽  
Author(s):  
Bikash Dey ◽  
Biswajit Sarkar ◽  
Sarla Pareek

This model investigates the variable production cost for a production house; under a two-echelon supply chain management where a single vendor and multi-retailers are involved. This production system goes through a long run system and generates an out-of-control state due to different issues and produces defective items. This model considers the reduction of the defective rate and setup cost through investment. A discrete investment for setup cost reduction and a continuous investment is considered to reduce the defective rate and to increase the quality of products. Setup and processing time are dependent on lead time in this model. The model is solved analytically to find the optimal values of the production rate, safety factors, optimum quantity, lead time length, investment for setup cost reduction, and the probability of the production process going out-of-control. An efficient algorithm is constructed to find the optimal solution numerically and sensitivity analysis is given to show the impact of different parameters. A case study and different cases are also given to validate the model.


2020 ◽  
Vol 226 ◽  
pp. 107643 ◽  
Author(s):  
Sunil Tiwari ◽  
Nima Kazemi ◽  
Nikunja Mohan Modak ◽  
Leopoldo Eduardo Cárdenas-Barrón ◽  
Sumon Sarkar

Author(s):  
Prashant Jindal ◽  
Anjana Solanki

This paper investigates the coordination issue in a decentralized supply chain having a vendor and a buyer for a defective product. The authors develop two inventory models with controllable lead time under service level constraint. The first one is propose under decentralized mode based on the Stackelberg model, the other one is propose under centralized mode of the integrated supply chain. Ordering cost reduction is also including as a decision variable along with shipping quantity, lead time and number of shipments. Computational findings using the software Matlab 7.0 are provided to find the optimal solution. The results of numerical examples show that centralized mode is better than that of decentralized mode, and to induce both vendor and buyer for coordination, proposed cost allocation model is effective. The authors also numerically investigate the effects of backorder parameter on the optimal solutions. Benefit of ordering cost reduction in both models is also provided.


Sign in / Sign up

Export Citation Format

Share Document