scholarly journals An improved evaporation rate-water cycle algorithm based genetic algorithm for solving generalized ratio problems

Author(s):  
Veeramani C ◽  
sharanya senthil

This paper presents an efficient metaheuristic approach for optimizing the generalized ratio problems such as the sum and multiplicative of linear or nonlinear ratio objective function with affine constraints. This paper focuses on the significance of hybrid techniques, which are implemented by using GA and ER-WCA to increase efficiency and robustness for solving linear and nonlinear generalized ratio problems. Initially, GA starts with an initial random population and it is processed by genetic operators. ER-WCA will observe and preserve the GAs fittest chromosome in each cycle and every generation. This Genetic ER-WCA algorithm is provided with better optimal solutions while solving constrained ratio optimization problems. Also, the effectiveness of the proposed genetic ER-WCA algorithm is analyzed while solving the large scale ratio problems. The results and performance of the proposed algorithm ensures a strong optimization and improves the exploitative process when compared to the other existing metaheuristic techniques. Numerical problems and applications are used to test the performance of the convergence and the accuracy of the approached method. The behavior of this Genetic ER-WCA algorithm is compared with those of evolutionary algorithms namely Neural Network Algorithm, Grey Wolf Optimization, ER-WCA, Water Cycle Algorithm, Firefly algorithm, Cuckoo search algorithm. The evaluated results show that the proposed algorithm increases the convergence and accuracy more than other existing algorithms.

Author(s):  
Venkateswarlu Chimmiri

Optimization is of great interest and it has widespread applications in engineering and science. It has become a major technology contributor to the growth of industry. It is extensively used in solving a wide variety of problems in design, operation, and analysis of engineering and technological processes. Optimization of large-scale problems pose difficulties concerning to dimensionality, differentiability, multimodality and nonlinearity in objective functions and constraints. In order to overcome such difficulties, there has been a rapidly growing interest in advanced optimization algorithms. Stochastic and evolutionary optimization algorithms are increasingly used to solve challenging optimization problems. These algorithms include genetic algorithm, simulated annealing, differential evolution, ant colony optimization, tabu search, particle swarm optimization, artificial bee colony algorithm, and cuckoo search algorithm. These algorithms are typically inspired by some phenomena from nature and they are robust. These algorithms do not require any gradient information and are even suitable to solve discrete optimization problems. These methods are extensively used to solve the optimization problems concerning to systems that are highly nonlinear, high dimensional, and noisy or for solving problems that are not easily solved by classical deterministic methods of optimization.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1840
Author(s):  
Nicolás Caselli ◽  
Ricardo Soto ◽  
Broderick Crawford ◽  
Sergio Valdivia ◽  
Rodrigo Olivares

Metaheuristics are intelligent problem-solvers that have been very efficient in solving huge optimization problems for more than two decades. However, the main drawback of these solvers is the need for problem-dependent and complex parameter setting in order to reach good results. This paper presents a new cuckoo search algorithm able to self-adapt its configuration, particularly its population and the abandon probability. The self-tuning process is governed by using machine learning, where cluster analysis is employed to autonomously and properly compute the number of agents needed at each step of the solving process. The goal is to efficiently explore the space of possible solutions while alleviating human effort in parameter configuration. We illustrate interesting experimental results on the well-known set covering problem, where the proposed approach is able to compete against various state-of-the-art algorithms, achieving better results in one single run versus 20 different configurations. In addition, the result obtained is compared with similar hybrid bio-inspired algorithms illustrating interesting results for this proposal.


2020 ◽  
Vol 9 (3) ◽  
pp. 24-38
Author(s):  
Cuong Dinh Tran ◽  
Tam Thanh Dao ◽  
Ve Song Vo

The cuckoo search algorithm (CSA), a new meta-heuristic algorithm based on natural phenomenon of the cuckoo species and Lévy flights random walk has been widely and successfully applied to several optimization problems so far. In the article, two modified versions of CSA, where new solutions are generated using two distributions including Gaussian and Cauchy distributions in addition to imposing bound by best solutions mechanisms are proposed for solving economic load dispatch (ELD) problems with multiple fuel options. The advantages of CSA with Gaussian distribution (CSA-Gauss) and CSA with Cauchy distribution (CSA-Cauchy) over CSA with Lévy distribution and other meta-heuristic are fewer parameters. The proposed CSA methods are tested on two systems with several load cases and obtained results are compared to other methods. The result comparisons have shown that the proposed methods are highly effective for solving ELD problem with multiple fuel options and/nor valve point effect.


Author(s):  
Anuj Kumar ◽  
Sangeeta Pant ◽  
S. B. Singh

In this chapter, authors briefly discussed about the classification of reliability optimization problems and their nature. Background of reliability and optimization has also been provided separately so that one can clearly understand the basic terminology used in the field of reliability optimization. Classification of various optimization techniques have also been discussed by the authors. Few metaheuristic techniques related to reliability optimization problems like Genetic Algorithm (GA), Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been discussed in brief. Thereafter, authors have discussed about Cuckoo Search Algorithm (CSA) which is the main focus of this chapter. Finally, Cuckoo Search Algorithm has been applied for solving reliability optimization problems of two complex systems namely complex bridge system and life support system in space capsule. Simulation results and conclusion have been presented in the last followed by the references.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 333 ◽  
Author(s):  
Jeng-Shyang Pan ◽  
Pei-Cheng Song ◽  
Shu-Chuan Chu ◽  
Yan-Jun Peng

Drone logistics can play an important role in logistics at the end of the supply chain and special environmental logistics. At present, drone logistics is in the initial development stage, and the location of drone logistics hubs is an important issue in the optimization of logistics systems. This paper implements a compact cuckoo search algorithm with mixed uniform sampling technology, and, for the problem of weak search ability of the algorithm, this paper combines the method of recording the key positions of the search process and increasing the number of generated solutions to achieve further improvements, as well as implements the improved compact cuckoo search algorithm. Then, this paper uses 28 test functions to verify the algorithm. Aiming at the problem of the location of drone logistics hubs in remote areas or rural areas, this paper establishes a simple model that considers the traffic around the village, the size of the village, and other factors. It is suitable for selecting the location of the logistics hub in advance, reducing the cost of drone logistics, and accelerating the large-scale application of drone logistics. This paper uses the proposed algorithm for testing, and the test results indicate that the proposed algorithm has strong competitiveness in the proposed model.


Author(s):  
Christopher Expósito-Izquierdo ◽  
Airam Expósito-Márquez

The chapter at hand seeks to provide a general survey of the Cuckoo Search Algorithm and its most highlighted variants. The Cuckoo Search Algorithm is a relatively recent nature-inspired population-based meta-heuristic algorithm that is based upon the lifestyle, egg laying, and breeding strategy of some species of cuckoos. In this case, the Lévy flight is used to move the cuckoos within the search space of the optimization problem to solve and obtain a suitable balance between diversification and intensification. As discussed in this chapter, the Cuckoo Search Algorithm has been successfully applied to a wide range of heterogeneous optimization problems found in practical applications over the last few years. Some of the reasons of its relevance are the reduced number of parameters to configure and its ease of implementation.


Sign in / Sign up

Export Citation Format

Share Document