scholarly journals Topology optimization of steering knuckle structure

Author(s):  
Saurabh Srivastava ◽  
Sachin Salunkhe ◽  
Sarang Pande ◽  
Bhavin Kapadiya

Steering knuckle connects steering system, suspension system and braking system to the chassis. The steering knuckle contributes a significant weight to the total weight of a vehicle. Increasing the efficiency of an automobile without compromising the performances is the major challenge faced by the manufacturers. This paper presents an effective topology optimization of steering knuckle used in a vehicle with the primary objective of minimizing weight. The study on optimization of knuckle is divided into two phases, the first phase involves making of a computer-aided design model of the original steering knuckle and carry out finite element analysis on the knuckle by estimating the loads, which are acting on the component. In the second phase, design optimization of the model of steering knuckle is carried out, and excess material is removed at the region where induced stress is negligible as obtained in finite element analysis assuming standard boundary and loading conditions. The paper describes a research work carried out to optimize structural topology giving the essential details. The methodology may be applied to optimize structural components used in applications where the ratio of desired properties to the cost, generally in terms of weight, is to be optimized. In the case of automobiles, strength to weight ratio has to be maximized. New researchers working in the area will have an understanding of the procedures, and further, the techniques may be applied to design in general.

2014 ◽  
Vol 532 ◽  
pp. 466-469 ◽  
Author(s):  
Ye Fei ◽  
Xing Kun Wang ◽  
Wen Min Liu

Turntable is the main bearing component of truck crane, its structural-load-carrying capacity influences the operational capability directly. This paper adopts the HyperWorks software to make topology optimization for the turntable structure of QY70G truck crane, and carry out the finite element analysis and comparison for the models before and after optimization, which provides an effective method to improve the turntable structure of truck crane. Turntable is one of the important components of truck crane,it bears hoist boom、lifting、luffing mechanism and bob-weight and so on, it is the transfer center of truck crane when it works, the structure will directly affect the lifting performance of the machine. But, the rotary table structure design is affected by the vehicle shape size and installation and space layout. The traditional design method is based the experience of analogy to check by finite element software, it is difficult to get the design scheme which meets the requirements given above and own better strength and stiffness, it also have the disadvantages of long design cycle and large workload. This article is based on the finite element method and structural topology optimal idea, by means of HyperWorks-OptiStruct, makes finite element analysis for the turntable structure of certain QY70G truck crane, and carries on the structural topology in the condition of setted installation location and space, in order to obtain the ideal design plan.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


2011 ◽  
Vol 87 ◽  
pp. 106-112 ◽  
Author(s):  
Amiri Asfarjani Alireza ◽  
Adibnazari Sayid ◽  
Reza Kashyzadeh Kazem

Fibrous composites are finding more and more applications in aerospace, automotive, and naval industries. They have high stiffness and strength to weight ratio and good rating in regards to life time fatigue. Investigating mechanical behavior under dynamic loads to replace this material is very important. In the present article, investigate Fatigue of Unidirectional Fibrous Composites by using finite element analysis. So, to achieve this purpose Firstly, modeling fiber and matrix in separate case and simulated semi actual conditions, attained S-N curve of fiber and matrix and after that by using micromechanical model of combination fiber and matrix can approach S-N curve of Unidirectional Fibrous Composites. Finally, Comparisons of the finite element analysis of Ansys and the experimental predictions indicate based on three point bending fatigue testing that the results are satisfactorily in good agreement with each other which approves the power law assumption in the model.


2018 ◽  
Vol 7 (4.27) ◽  
pp. 148
Author(s):  
Wan Muhammad Syahmi Wan Fauzi ◽  
Abdul Rahman Omar ◽  
Helmi Rashid

Recently, studies concerning motorcycle have been an overwhelming area of research interest. As an alternative to the real world assessment, researchers have utilized motorcycle simulator as a workstation to conduct studies in the motorcycle niche area. This paper deal with the development of a new motorcycle simulator named Semi-Interface Motorcycle Simulator (SiMS). Combination of Computer Aided Design (CAD) and Finite Element Analysis (FEA) software made it possible to design and simulates the motorcycle simulator’s conceptual design before being fabricated. The SiMS setup not only provides a near-to-real and immerse motorcycle riding experience on a super sport motorcycle model, but it also allows safer high speed motorcycle simulations to be conducted in a controlled environment that is portable and ergonomically easier to transport to various venues.  


Sign in / Sign up

Export Citation Format

Share Document