scholarly journals ORFEES - a radio spectrograph for the study of solar radio bursts and space weather applications

Author(s):  
Abdallah Hamini ◽  
Gabriel Auxepaules ◽  
Lionel Birée ◽  
Guy Kenfack ◽  
Alain Kerdraon ◽  
...  

Radio bursts are sensitive tracers of non-thermal electron populations in the solar corona. They are produced by electron beams and shock waves propagating through the corona and the Heliosphere, and by trapped electron populations in coronal mass ejections (CMEs) and in quiescent active regions. Combining space borne and ground-based radio spectrographs allows one to track disturbances all the way between the low corona, near or at the sites of particle acceleration, and the spacecraft. Radio observations are therefore a significant tool in probing the solar origin of heliospheric disturbances, which is a central research topic as   witnessed by the Parker Solar Probe and Solar Orbiter missions. The full scientific return of these projects needs vigorous ground-based support, which at radio wavelengths covers altitudes up to about a solar radius above the photosphere. Besides research in solar and heliospheric physics, monitoring solar radio bursts also supports space weather services. On occasion radio bursts can themselves be a space weather hazard. The Nan\c{c}ay radio astronomy station in central France has a long tradition of monitoring radio emission at decimetre-to-metre wavelengths. This article describes the radio spectrograph ORFEES ({\it Observations Radiospectrographiques pour FEDOME et l'Etude des Eruptions Solaires}). It observes the whole-Sun flux density between 144 and 1004 MHz, which pertains to regions between the low corona and about half a solar radius above the photosphere. ORFEES is the result of a partnership between Observatoire de Paris and the French Air Force, which operates the experimental space weather service FEDOME. The primary use of the instrument at Paris Observatory is the astrophysical observation. Low-resolution data with rapid availability are presently produced for the French Air Force. Similar information can be made available to a broader range of space-weather service providers. This article gives an overview of the instrument design and the access to the data, and shows a few illustrative observations.

2021 ◽  
Author(s):  
Theogene Ndacyayisenga ◽  
Ange Cynthia Umuhire ◽  
Jean Uwamahoro ◽  
Christian Monstein

Abstract. This article summarizes the results of an analysis of solar radio bursts detected by the e-Compound Astronomical Low cost Low-frequency Instrument for spectroscopy and Transportable Observatory (e-CALLISTO) spectrometer hosted by the University of Rwanda, College of Education. The data analysed were detected during the first year (2014–2015) of the instrument operation. The Atmospheric Imaging Assembly (AIA) images on board the Solar Dynamics Observatory (SDO) were used to check the location of propagating waves associated with type III radio bursts detected without solar flares. Using quick plots provided by the e-CALLISTO website, we found a total of 202 solar radio bursts detected by the CALLISTO station located in Rwanda. Among them, 5 are type IIs, 175 are type IIIs, and 22 type IVs radio bursts. It is found that all analysed type IIs and ∼37 % of type III bursts are associated with impulsive solar flares while Type IV radio bursts are poorly associated with flares. Furthermore, all of the analysed type II bursts are associated with CMEs which is consistent with the previous studies, and ∼44 % of type IIIs show association with CMEs. On the other hand it is observed that the majority of type IV radio bursts are believed to be originated from CME-driven shocks. Findings from this study confirms that solar radio bursts (SRBs) from ground observation and analysis constitute a clue to diagnose the space weather phenomena such as solar flare and CMEs and to some extent, they may serve as the advance warning of the related severe space weather hazards.


Author(s):  
Iver H. Cairns ◽  
S. A. Knock ◽  
P. A. Robinson ◽  
Z. Kuncic

1974 ◽  
Vol 57 ◽  
pp. 225-226
Author(s):  
C. Chiuderi ◽  
R. Giachetti ◽  
C. Mercier ◽  
H. Rosenberg ◽  
C. Slottje

(Solar Phys.). High spectral, temporal and spatial resolution observations were obtained with the 60-channel Utrecht solar radio spectrograph (160–320 MHz) and the 169 MHz Nançay solar radioheliograph. From a large number of type III bursts the average height was found to be 0.37 solar radius above the photosphere, corresponding to approximately the Newkirk streamer density, if the bursts are emitted at the harmonic of the local plasma frequency. No center-to-limb variation, nor east-west asymmetry was observed. All double bursts, double humped bursts, precursor-type III had exactly the same position and general shape for both members of the pair. From this it was concluded that fundamental-harmonic pairs are very rare at frequencies above 160 MHz (Mercier and Rosenberg, 1974).


2018 ◽  
Vol 19 (1-2) ◽  
pp. 36-42 ◽  
Author(s):  
Karl-Ludwig Klein ◽  
Carolina Salas Matamoros ◽  
Pietro Zucca

1965 ◽  
Vol 18 (5) ◽  
pp. 473 ◽  
Author(s):  
M Krishnamurthi ◽  
G Sivarama Sastry ◽  
T Seshagiri Rao

An analysis of single-frequency records of type II solar radio bursts at 29 Mc/s has been made. Such characteristic features as harmonic structure and band splitting due to coronal magnetic fields have been identified. Calculations indicate that the shock fronts generating the type II bursts experience a deceleration as they move outwards. Existing theories have been used to estimate the magnetic field strengths, which come out to be of the order of 3-8 G at a height of 0�7 solar radius above the photosphere at the time of occurrence of these bursts.


1994 ◽  
Vol 144 ◽  
pp. 283-284
Author(s):  
G. Maris ◽  
E. Tifrea

The type II solar radio bursts produced by a shock wave passing through the solar corona are one of the most frequently studied solar activity phenomena. The scientific interest in this type of phenomenon is due to the fact that the presence of this radio event in a solar flare is an almost certain indicator of a future geophysical effect. The origin of the shock waves which produce these bursts is not at all simple; besides the shocks which are generated as a result of a strong energy release during the impulsive phase of a flare, there are also the shocks generated by a coronal mass ejection or the shocks which appear in the interplanetary space due to the supplementary acceleration of the solar particles.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Yu. V. Yasyukevich ◽  
A. S. Yasyukevich ◽  
E. I. Astafyeva

Sign in / Sign up

Export Citation Format

Share Document