scholarly journals Validation of the suppressive subtractive hybridization method in Mycoplasma agalactiae species by the comparison of a field strain with the type strain PG2

2004 ◽  
Vol 35 (2) ◽  
pp. 199-212 ◽  
Author(s):  
Marc S. Marenda ◽  
Edy M. Vilei ◽  
Fran�ois Poumarat ◽  
Joachim Frey ◽  
Xavier Berthelot
Microbiology ◽  
2005 ◽  
Vol 151 (2) ◽  
pp. 475-489 ◽  
Author(s):  
Marc S. Marenda ◽  
Evelyne Sagné ◽  
François Poumarat ◽  
Christine Citti

The phylogenically related Mycoplasma agalactiae and Mycoplasma bovis species are two ruminant pathogens difficult to differentiate and for which a limited amount of sequence data are available. To assess the degree of genomic diversity existing between and within these mycoplasma species, sets of DNA fragments specific for M. bovis type-strain PG45 or for M. agalactiae type-strain PG2 were isolated by suppression subtractive hybridization and used as probes on a panel of M. agalactiae and M. bovis field isolates. Results indicated that approximately 70 % of the DNA fragments specific to one or the other type strain are represented in all field isolates of the corresponding species. Only one M. bovis isolate, which was first classified as M. agalactiae, reacted with 15 % of the PG2-specific probes, while several M. agalactiae isolates reacted with 15 % of the PG45-specific probes. Sequence analyses indicated that most of the genomic diversity observed within one species is related to ORFs with (i) no homologies to proteins recorded in the databases or (ii) homologies to proteins encoded by restriction modification systems. Reminiscent of gene transfer as a means for genomic diversity, a PG45-specific DNA fragment with significant homologies to a central protein of an integrative conjugative element of Mycoplasma fermentans (ICEF) was found in most M. bovis field isolates and in a few M. agalactiae isolates. Finally, sequences encoding part of DNA polymerase III were found in both sets of M. agalactiae- and M. bovis-specific DNA fragments and were used to design a species-specific PCR assay for the identification and differentiation of M. agalactiae and M. bovis.


2006 ◽  
Vol 74 (7) ◽  
pp. 4064-4074 ◽  
Author(s):  
Mónica Oleastro ◽  
Lurdes Monteiro ◽  
Philippe Lehours ◽  
Francis Mégraud ◽  
Armelle Ménard

ABSTRACT Peptic ulcer disease (PUD) occurs after a long-term Helicobacter pylori infection. However, the disease can develop earlier, and rare cases have been observed in children, suggesting that these H. pylori strains may be more virulent. We used suppressive subtractive hybridization for comparative genomics between H. pylori strains isolated from a 5-year-old child with duodenal ulcer and from a sex- and age-matched child with gastritis only. The prevalence of the 30 tester-specific subtracted sequences was determined on a collection of H. pylori strains from children (15 ulcers and 30 gastritis) and from adults (46 ulcers and 44 gastritis). Two of these sequences, jhp0562 (80.0% versus 33.3%, P = 0.008) and jhp0870 (80.0% versus 36.7%, P = 0.015), were highly associated with PUD in children and a third sequence, jhp0828, was less associated (40.0% versus 10.0%, P = 0.048). Among adult strains, none of the 30 sequences was associated with PUD. However, both jhp0562 and jhp0870 were less prevalent in adenocarcinoma strains than in PUD strains from children and adults, the difference being statistically significant for jhp0870. In conclusion, two H. pylori genes were identified as being strongly associated with PUD in children, and their putative roles as an outer membrane protein for jhp0870 and in lipopolysaccharide biosynthesis for jhp0562, suggest that they may be novel virulence factors of H. pylori.


Insects ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 199
Author(s):  
Zih-Ting Chang ◽  
Chong-Yu Ko ◽  
Ming-Ren Yen ◽  
Yue-Wen Chen ◽  
Yu-Shin Nai

The microsporidium Nosema ceranae is a high prevalent parasite of the European honey bee (Apis mellifera). This parasite is spreading across the world into its novel host. The developmental process, and some mechanisms of N. ceranae-infected honey bees, has been studied thoroughly; however, few studies have been carried out in the mechanism of gene expression in N. ceranae during the infection process. We therefore performed the suppressive subtractive hybridization (SSH) approach to investigate the candidate genes of N. ceranae during its infection process. All 96 clones of infected (forward) and non-infected (reverse) library were dipped onto the membrane for hybridization. A total of 112 differentially expressed sequence tags (ESTs) had been sequenced. For the host responses, 20% of ESTs (13 ESTs, 10 genes, and 1 non-coding RNA) from the forward library and 93.6% of ESTs (44 ESTs, 28 genes) from the reverse library were identified as differentially expressed genes (DEGs) of the hosts. A high percentage of DEGs involved in catalytic activity and metabolic processes revealed that the host gene expression change after N. ceranae infection might lead to an unbalance of physiological mechanism. Among the ESTs from the forward library, 75.4% ESTs (49 ESTs belonged to 24 genes) were identified as N. ceranae genes. Out of 24 N. ceranae genes, nine DEGs were subject to real-time quantitative reverse transcription PCR (real-time qRT-PCR) for validation. The results indicated that these genes were highly expressed during N. ceranae infection. Among nine N. ceranae genes, one N. ceranae gene (AAJ76_1600052943) showed the highest expression level after infection. These identified differentially expressed genes from this SSH could provide information about the pathological effects of N. ceranae. Validation of nine up-regulated N. ceranae genes reveal high potential for the detection of early nosemosis in the field and provide insight for further applications.


2006 ◽  
Vol 24 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Mohamed T. Ghorbel ◽  
Greig Sharman ◽  
Charles Hindmarch ◽  
Kevin G. Becker ◽  
Tanya Barrett ◽  
...  

The magnocellular neurons (MCNs) of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus are the principal site of biosynthesis of prepropeptide precursor of the antidiuretic hormone vasopressin (VP). This precursor is processed during anterograde axonal transportation to terminals in the posterior pituitary gland, where biologically active VP is stored until release into the general circulation in response to physiological activation of the SON by osmotic cues. By binding to V2-type receptors located in the kidney, VP decreases the amount of water lost in urine. Osmotic activation of the SON is accompanied by a dramatic morphological and functional remodeling. We have sought to understand the mechanistic basis of this plasticity in terms of the differential expression of genes. To identify such genes, we adopted an unbiased global approach based on suppressive subtractive hybridization-polymerase chain reaction (SSH-PCR) Using this method, we generated libraries of clones putatively differentially expressed in control vs. dehydrated SON. To rapidly screen these libraries, 1,152 clones were subjected to microarray analysis, resulting in the identification of 459 differentially expressed transcripts. cDNA clones corresponding to 56 of these RNAs were sequenced, revealing many of them to be novel expressed sequence tags (ESTs). Four transcripts were shown by in situ hybridization (ISH) to be significantly up- or downregulated in the SON after dehydration. These genes may represent novel effectors or mediators of SON physiological remodeling.


Sign in / Sign up

Export Citation Format

Share Document