scholarly journals Light and electron microscopicin situhybridization of collagen type I and type II mRNA in the fibrocartilaginous tissue of late-stage osteoarthritis

1998 ◽  
Vol 6 (4) ◽  
pp. 278-285 ◽  
Author(s):  
Nicolai Miosge ◽  
Kai Waletzko ◽  
Christa Bode ◽  
Fabio Quondamatteo ◽  
Wolfgang Schultz ◽  
...  
Biorheology ◽  
2009 ◽  
Vol 46 (6) ◽  
pp. 439-450 ◽  
Author(s):  
Jennifer R. Amos ◽  
Shigeng Li ◽  
Michael Yost ◽  
Harry Phloen ◽  
Jay D. Potts

2018 ◽  
Vol 9 ◽  
pp. 204173141878982 ◽  
Author(s):  
Elisa Costa ◽  
Cristina González-García ◽  
José Luis Gómez Ribelles ◽  
Manuel Salmerón-Sánchez

Articular chondrocytes are difficult to grow, as they lose their characteristic phenotype following expansion on standard tissue culture plates. Here, we show that culturing them on surfaces of poly(L-lactic acid) of well-defined microtopography allows expansion and maintenance of characteristic chondrogenic markers. We investigated the dynamics of human chondrocyte dedifferentiation on the different poly(L-lactic acid) microtopographies by the expression of collagen type I, collagen type II and aggrecan at different culture times. When seeded on poly(L-lactic acid), chondrocytes maintained their characteristic hyaline phenotype up to 7 days, which allowed to expand the initial cell population approximately six times without cell dedifferentiation. Maintenance of cell phenotype was afterwards correlated to cell adhesion on the different substrates. Chondrocytes adhesion occurs via the α5 β1 integrin on poly(L-lactic acid), suggesting cell–fibronectin interactions. However, α2 β1 integrin is mainly expressed on the control substrate after 1 day of culture, and the characteristic chondrocytic markers are lost (collagen type II expression is overcome by the synthesis of collagen type I). Expanding chondrocytes on poly(L-lactic acid) might be an effective solution to prevent dedifferentiation and improving the number of cells needed for autologous chondrocyte transplantation.


Biorheology ◽  
2010 ◽  
Vol 47 (2) ◽  
pp. 163-163
Author(s):  
Jennifer R. Amos ◽  
Shigeng Li ◽  
Michael Yost ◽  
Harry Phloen ◽  
Jay D. Potts

2005 ◽  
Vol 28 (3) ◽  
pp. 165-175 ◽  
Author(s):  
Anik Chevrier ◽  
Evgeny Rossomacha ◽  
Michael D. Buschmann ◽  
Caroline D. Hoemann

1986 ◽  
Vol 100 (2) ◽  
pp. 314-330 ◽  
Author(s):  
L. Butler ◽  
B. Simmons ◽  
J. Zimmermann ◽  
P. DeRiso ◽  
K. Phadke

2019 ◽  
Author(s):  
G. Bahcecioglu ◽  
B. Bilgen ◽  
N. Hasirci ◽  
V. Hasirci

AbstractA PCL/hydrogel construct that would mimic the structural organization, biochemistry and anatomy of meniscus was engineered. The compressive (380 ± 40 kPa) and tensile modulus (18.2 ± 0.9 MPa) of the PCL scaffolds were increased significantly when constructs were printed with a shifted design and circumferential strands mimicking the collagen organization in native tissue (p<0.05). Presence of circumferentially aligned PCL strands also led to elongation and alignment of the human fibrochondrocytes. Gene expression of the cells in agarose (Ag), gelatin methacrylate (GelMA), and GelMA-Ag hydrogels was significantly higher than that of cells on the PCL scaffolds after a 21-day culture. GelMA exhibited the highest level of collagen type I (COL1A2)mRNA expression, while GelMA-Ag exhibited the highest level of aggrecan (AGG)expression (p<0.001, compared to PCL). GelMA and GelMA-Ag exhibited a high level of collagen type II (COL2A1) expression (p<0.05, compared to PCL). Anatomical scaffolds with circumferential PCL strands were impregnated with cell-loaded GelMA in the periphery and GelMA-Ag in the inner region. GelMA and GelMA-Ag hydrogels enhanced the production of COL 1 and COL 2 proteins after a 6-week culture (p<0.05). COL 1 expression increased gradually towards the outer periphery, while COL 2 expression decreased. We were thus able to engineer an anatomical meniscus with a cartilage-like inner region and fibrocartilage-like outer region.


2011 ◽  
Vol 6 (9) ◽  
pp. 721-730 ◽  
Author(s):  
Agnes D. Berendsen ◽  
Lucienne A. Vonk ◽  
Behrouz Zandieh-Doulabi ◽  
Vincent Everts ◽  
Ruud A. Bank

Sign in / Sign up

Export Citation Format

Share Document