Limb bud mesenchyme cultured under tensile strain remodel collagen type I tubes to produce fibrillar collagen type II

Biorheology ◽  
2010 ◽  
Vol 47 (2) ◽  
pp. 163-163
Author(s):  
Jennifer R. Amos ◽  
Shigeng Li ◽  
Michael Yost ◽  
Harry Phloen ◽  
Jay D. Potts
Biorheology ◽  
2009 ◽  
Vol 46 (6) ◽  
pp. 439-450 ◽  
Author(s):  
Jennifer R. Amos ◽  
Shigeng Li ◽  
Michael Yost ◽  
Harry Phloen ◽  
Jay D. Potts

2018 ◽  
Vol 9 ◽  
pp. 204173141878982 ◽  
Author(s):  
Elisa Costa ◽  
Cristina González-García ◽  
José Luis Gómez Ribelles ◽  
Manuel Salmerón-Sánchez

Articular chondrocytes are difficult to grow, as they lose their characteristic phenotype following expansion on standard tissue culture plates. Here, we show that culturing them on surfaces of poly(L-lactic acid) of well-defined microtopography allows expansion and maintenance of characteristic chondrogenic markers. We investigated the dynamics of human chondrocyte dedifferentiation on the different poly(L-lactic acid) microtopographies by the expression of collagen type I, collagen type II and aggrecan at different culture times. When seeded on poly(L-lactic acid), chondrocytes maintained their characteristic hyaline phenotype up to 7 days, which allowed to expand the initial cell population approximately six times without cell dedifferentiation. Maintenance of cell phenotype was afterwards correlated to cell adhesion on the different substrates. Chondrocytes adhesion occurs via the α5 β1 integrin on poly(L-lactic acid), suggesting cell–fibronectin interactions. However, α2 β1 integrin is mainly expressed on the control substrate after 1 day of culture, and the characteristic chondrocytic markers are lost (collagen type II expression is overcome by the synthesis of collagen type I). Expanding chondrocytes on poly(L-lactic acid) might be an effective solution to prevent dedifferentiation and improving the number of cells needed for autologous chondrocyte transplantation.


2005 ◽  
Vol 28 (3) ◽  
pp. 165-175 ◽  
Author(s):  
Anik Chevrier ◽  
Evgeny Rossomacha ◽  
Michael D. Buschmann ◽  
Caroline D. Hoemann

1986 ◽  
Vol 100 (2) ◽  
pp. 314-330 ◽  
Author(s):  
L. Butler ◽  
B. Simmons ◽  
J. Zimmermann ◽  
P. DeRiso ◽  
K. Phadke

Author(s):  
Adrianto Prasetyo Perbowo ◽  
Dwikora Novembri Utomo ◽  
Lukas Widhiyanto ◽  
Primadenny Ariesa Airlangga ◽  
Purwati Purwati

Abstract Cell-based therapies such as Scaffold, stem cells, and secretome, are one of the alternatives to enhance the regeneration of hyaline-like cartilage in cases of cartilage defects. This study is an in-vivo experiment using animal models, in which we apply a composite of DFLP (Dwikora-Ferdiansyah-Lesmono-Purwati) Scaffold and Adipose-Derived Stem Cells (ASCs) or Secretome to an injury model on the distal femoral trochlea of New Zealand White Rabbits. The animals were divided into four groups: (1) control (K); (2) Scaffold only (S); (3) Scaffold + ASCs (SA); (4) Scaffold + Secretome (SS). Animals were terminated in the 12th week, and an immunohistochemistry (IHC) evaluation for Collagen type I and II were done. Statistical analysis shows that collagen type I IHC between groups shows no significant difference (p = 0.546). Collagen type II IHC shows significant difference between groups (p = 0,016). The findings in this study showed that Scaffold + ASCs group and Scaffold + Secretome have better collagen type II expression compared to the control group. DFLP Scaffold composite with ASCs or Secretome shows potential for cartilage regeneration therapy by increasing type II collagen expression as in hyaline-like cartilage which may be used for regenerative therapy for cartilage defects. Keywords             : DFLP Scaffold; Adipose-Derived Stem Cells (ASCs); Secretome; Collagen Type I; Collagen Type IICorrespondence    : [email protected]


2020 ◽  
Vol 117 (21) ◽  
pp. 11387-11398 ◽  
Author(s):  
Bo Ri Seo ◽  
Xingyu Chen ◽  
Lu Ling ◽  
Young Hye Song ◽  
Adrian A. Shimpi ◽  
...  

Altered microarchitecture of collagen type I is a hallmark of wound healing and cancer that is commonly attributed to myofibroblasts. However, it remains unknown which effect collagen microarchitecture has on myofibroblast differentiation. Here, we combined experimental and computational approaches to investigate the hypothesis that the microarchitecture of fibrillar collagen networks mechanically regulates myofibroblast differentiation of adipose stromal cells (ASCs) independent of bulk stiffness. Collagen gels with controlled fiber thickness and pore size were microfabricated by adjusting the gelation temperature while keeping their concentration constant. Rheological characterization and simulation data indicated that networks with thicker fibers and larger pores exhibited increased strain-stiffening relative to networks with thinner fibers and smaller pores. Accordingly, ASCs cultured in scaffolds with thicker fibers were more contractile, expressed myofibroblast markers, and deposited more extended fibronectin fibers. Consistent with elevated myofibroblast differentiation, ASCs in scaffolds with thicker fibers exhibited a more proangiogenic phenotype that promoted endothelial sprouting in a contractility-dependent manner. Our findings suggest that changes of collagen microarchitecture regulate myofibroblast differentiation and fibrosis independent of collagen quantity and bulk stiffness by locally modulating cellular mechanosignaling. These findings have implications for regenerative medicine and anticancer treatments.


2009 ◽  
Vol 18 (8) ◽  
pp. 923-932 ◽  
Author(s):  
Martin Jung ◽  
Balazs Kaszap ◽  
Anna Redöhl ◽  
Eric Steck ◽  
Steffen Breusch ◽  
...  

Adult mesenchymal stem cells (MSCs) are an attractive cell source for new treatment strategies in regenerative medicine. This study investigated the potential effect of matrix assisted MSC transplantation for articular cartilage regeneration in a large-animal model 8 weeks postoperatively. MSCs from bone marrow aspirates of eight Goettingen minipigs were isolated and expanded prior to surgery. Articular cartilage defects of 5.4 mm were created bilaterally in the medial patellar groove without penetrating the subchondral bone plate. Defects were either left empty ( n = 4), covered with a collagen type I/III membrane ( n = 6) or additionally treated with autologous MSC transplantation (2 × 106; n = 6). After 8 weeks animals were euthanized and the defect area was assessed for its gross appearance. Histomorphological analysis of the repair tissue included semiquantitative scoring (O'Driscoll score) and quantitative histomorphometric analysis for its glycosaminoglycan (GAG) and collagen type II content. All membranes were found to cover the defect area 8 weeks postoperatively. Median defect filling was 115.8% (membrane), 117.8% (empty), and 100.4% (MSC), respectively (not significant). Histomorphological scoring revealed significantly higher values in MSC-treated defects (median 16.5) when compared to membrane treatment (median 9.5) or empty defects (median 11.5; p = 0.015 and p = 0.038). Histomorphometric analysis showed larger GAG/collagen type II-positive areas in the MSC-treated group (median 24.6%/29.5% of regeneration tissue) compared to 13.6%/33.1% (empty defects) and 1.7%/6.2% (membrane group; p = 0.066). Cell distribution was more homogeneous in MSC compared to membrane-only group, where cells were found mainly near the subchondral zone. In conclusion, autologous matrix-assisted MSC transplantation significantly increased the histomorphological repair tissue quality during early articular cartilage defect repair and resulted in higher GAG/collagen type II-positive cross-sectional areas of the regenerated tissue.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2318-2318
Author(s):  
Grazia Loredana Mendolicchio ◽  
Corrado Lodigiani ◽  
Monica Bacci ◽  
Marco Scardino ◽  
Carlo Ferrari Matteo ◽  
...  

Abstract Abstract 2318 Background. Studies have shown that 40–85% of patients undergoing total knee replacement develop venographically confirmed deep vein thrombosis (DVT) if not given post-operative thromboprophylaxis; approximately 0.1 to 1.7% of these patients will suffer fatal pulmonary embolism (PE). Oral anti-vitamin K anticoagulants are effective for the prevention and treatment of venous thrombosis, but have limitations. In particular, they have multiple food and drug interactions as well as variable pharmacokinetics and pharmacodynamics, such that regular laboratory monitoring and dose adjustments are required to maintain an optimal therapeutic range as defined with the International Normalized Ratio (INR). New oral agents that inhibit coagulation factor Xa or thrombin have been developed and shown to be effective and safe without requiring laboratory monitoring. In view of the relevance of the latter point, we have studied patients treated with an oral anti factor Xa agent (Rivaroxaban) or Coumadin, and evaluated the antithrombotic efficacy of the respective drugs by measuring platelet aggregation and fibrin deposition in patient blood perfused over fibrillar collagen type I. Material and Methods. Blood drawn from an antecubital vein and containing 0.011 M trisodium citrate as anticoagulant was recalcified with 5 mM calcium chloride and immediately perfused through a rectangular chamber mounted on the stage of a confocal microscope and presenting a surface coated with fibrillar collagen type I under laminar flow conditions at the wall shear rate of 300 1/s. Platelets and fibrin were specifically detected in situ through distinct fluorochromes. We tested 8 normal controls, 8 patients treated with Coumadin and a stable INR value between 1.94 and 2.90 (mean 2.34; standard deviation 0.34), and 7 patients treated with Rivaroxaban at between 8 and 16 days (mean 12.14; standard deviation 2.48 days) from the initiation of therapy. The volume of platelet aggregates and fibrin deposited onto the collagen fibrils was measured distinctly from stacks of confocal sections by integrating surface coverage of each thrombus component in consecutive optical planes separated by 2 micrometers in height. Results and Discussion. There was no significant difference in the volume of platelet and fibrin aggregates formed in blood of normal control and patients treated with either Coumadin or Rivaroxaban. This result was surprising because the patients treated with Coumadin had a laboratory demonstration of significantly retarded coagulation. We reasoned, however, that coagulation tests are typically performed in platelet-poor plasma, while in the perfusion assay coagulation occurs in whole blood and on a surface onto which flowing platelets are fully activated, thus increasing the local procoagulant potential. For this reason, we performed a series of experiments in which a variable amount of a highly specific thrombin inhibitor, lepirudin, was titrated into the recalcified blood before perfusion. We thus determined that with 50 nM lepirudin added to blood there was no decrease in the volume of platelet aggregates and fibrin deposited onto collagen in blood of normal individuals, while the volume of fibrin was decreased in patients receiving either Coumadin or Rivaroxaban. The corresponding values for normal controls, Coumadin-treated and Rivaroxaban-treated patients, in the order, were (mean volume ± standard error of the mean in cubic micrometers): Platelet aggregates = 28,592±3,354; 36,959±4,973; 44,448±7,110; Fibrin = 84,190±9,740; 47,298±7,308; 35,780±5,091. The differences in platelet aggregate volumes were not significant, while fibrin volume was significantly smaller in the anticoagulant-treated patients as compared to normal (p<0.01 for Coumadin and p<0.001 for Rivaroxaban); the difference between patients treated with one or the other anticoagulant was not significant. These results show that Rivaroxaban and Coumadin at therapeutically effective dosage have comparable effect in reducing thrombin generation, as evidenced by the reduced volume of fibrin formed in flowing blood exposed to collagen. This, however, is accompanied by an increased volume of platelet aggregates on the highly thrombogenic collagen surface. The relevance of these experimental results with respect to prevention of arterial as opposed to venous thrombosis deserves further investigation. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document