Small intestinal dysmotility in cirrhotic patients: correlation with severity of liver disease and cirrhosis-associated complications

Author(s):  
Felix Gundling ◽  
Margo Luxi ◽  
Holger Seidel ◽  
Wolfgang Schepp ◽  
Thomas Schmidt

Abstract Introduction Altered small intestinal motility has been observed in various manometry studies in patients with cirrhosis. Since small bowel manometry is available only in a few centers, interpretation of dysmotility in cirrhosis is controversial. Patients and Methods In this study, both fasting and postprandial manometric tracings of 24-hour antroduodenojejunal manometries were analyzed using both visual analysis and computer-aided analysis. Results In 34 patients (83 %), the mean migrating motor complex (MMC) cycle length was different compared with healthy controls. Phase II was prolonged in 27 patients (66 %), while phase I showed a reduced duration in 23 (56 %) and in phase III in 13 individuals (32 %). We also observed special motor patterns, e. g., migrating clustered contractions (MCCs) or retrograde clustered contractions (RCCs), which were present during fasting (69 %) and postprandial (92 %) motility, while none of the healthy controls showed any special motor patterns. Special motor patterns showed a significant correlation with the severity of cirrhosis (Child-Score; p > 0.05) and the existence of ascites (p < 0.05). Discussion This study in a large cohort of patients with cirrhosis by using 24-hour, solid state portable manometry showed in most individuals disturbances of cyclic fasting motility. Special motor patterns like RCCs during fasting and postprandial motility could be observed exclusively in the cirrhosis group, showing a significant correlation with severity of cirrhosis and the occurence of associated complications.

1987 ◽  
Vol 252 (3) ◽  
pp. G301-G308 ◽  
Author(s):  
S. A. Chung ◽  
N. E. Diamant

We investigated vagal control of the migrating myoelectric complex (MMC) and postprandial pattern of the canine small intestine. Gastric and small intestinal motility were monitored in six conscious dogs. The vagosympathetic nerves, previously isolated in bilateral skin loops, were blocked by cooling. To feed, a meat-based liquid food was infused by tube into the gastric fundus. MMC phases I, II, III, and IV were observed in the fasted state. On feeding, the fed pattern appeared quickly in the proximal small bowel but was delayed distally. Vagal blockade abolished all gastric contractions and spiking activity as well as the small bowel fed pattern. During vagal blockade, the small bowel exhibited MMC-like migrating bursts of spikes in both the fasted and fed states. The migration and cycling of these bursts were not significantly different from the MMC, but the duodenal and jejunal phase II was absent or shortened. On termination of vagal blockade, normal fasting or fed activity reappeared but with a delay in the fed pattern distally. We conclude: the ileum is the least sensitive to vagal blockade; the fasting vagal influence is exerted primarily on phases I and II of the duodenal and jejunal MMC; the fed pattern throughout the entire small bowel is normally dependent upon vagal integrity; the phase III-like bursts of activity seen during vagal blockade likely represents the intrinsic small bowel MMC, which is vagally independent.


2008 ◽  
Vol 134 (4) ◽  
pp. A-793
Author(s):  
Giuseppe Merra ◽  
Antonio Dal Lago ◽  
Emidio Scarpellini ◽  
Rosalba Finizio ◽  
Michele Santoro ◽  
...  

2020 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Taghi Amiriani ◽  
Vahid Khori ◽  
Ali Davarian ◽  
Niloofar Rajabli ◽  
Mahsa Niknam ◽  
...  

Background: Cirrhosis could lead to a long corrected QT (QTc) interval in a subgroup of patients, but there are spare data on its diurnal variation. Objectives: The present study aimed to determine the diurnal variation of QTc interval and its relationship to heart rate and blood pressure variation during 24-hour Holter-monitoring in non-alcoholic cirrhosis in comparison with the healthy controls. Methods: The study population comprised 15 patients with non-alcoholic cirrhosis and 15 healthy subjects, undergoing 24-hour electrocardiogram (ECG), heart rate, and blood pressure monitoring. The mean QT interval, mean QTc, maximum and minimum QT, QT dispersion (QT disp), heart rate, and mean arterial blood pressure were measured for each person for 24 hours. Liver stiffness measurement (LSM) was performed by FibroScan® 502 machine (EchoSense, Paris, France, 5 MHz). The results were demonstrated as percentages and mean ± SD. P value ≤ 0.05 was considered significant. Results: Mean QTc was significantly higher in cirrhosis (438 ms) than healthy controls (401.7 ms) (P = 0.03). The mean heart rate was significantly different in cirrhotic patients (79.6 ± 2.9/bpm) compared to healthy controls (72.47 ± 2.0/bpm) (P = 0.05). Conclusions: In this study, QTc was prolonged and increased with the severity of cirrhosis, and its diurnal variation in cirrhosis was different from healthy subjects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nikolaj Worm Ørntoft ◽  
Michel Blé ◽  
Anna Baiges ◽  
Jose Ferrusquia ◽  
Virginia Hernández-Gea ◽  
...  

IntroductionMacrophages are involved in development and progression of chronic liver disease and portal hypertension. The macrophage activation markers soluble (s)CD163 and soluble mannose receptor (sMR), are associated with portal hypertension in patient with liver cirrhosis but never investigated in patients with non-cirrhotic portal hypertension. We hypothesized higher levels in cirrhotic patients with portal hypertension than patients with non-cirrhotic portal hypertension. We investigated sCD163 and sMR levels in patients with portal hypertension due to idiopathic portal hypertension (IPH) and portal vein thrombosis (PVT) in patients with and without cirrhosis.MethodsWe studied plasma sCD163 and sMR levels in patients with IPH (n = 26), non-cirrhotic PVT (n = 20), patients with cirrhosis without PVT (n = 31) and with PVT (n = 17), and healthy controls (n = 15).ResultsMedian sCD163 concentration was 1.51 (95% CI: 1.24–1.83) mg/L in healthy controls, 1.96 (95% CI: 1.49–2.56) in patients with non-cirrhotic PVT and 2.16 (95% CI: 1.75–2.66) in patients with IPH. There was no difference between non-cirrhotic PVT patients and healthy controls, whereas IPH patients had significantly higher levels than controls (P &lt; 0.05). The median sCD163 was significantly higher in the cirrhotic groups compared to the other groups, with a median sCD163 of 6.31 (95% CI: 5.16–7.73) in cirrhotics without PVT and 5.19 (95% CI: 4.18–6.46) with PVT (P &lt; 0.01, all). Similar differences were observed for sMR.ConclusionSoluble CD163 and sMR levels are elevated in patients with IPH and patients with cirrhosis, but normal in patients with non-cirrhotic PVT. This suggests that hepatic macrophage activation is more driven by the underlying liver disease with cirrhosis than portal hypertension.


Gut ◽  
1999 ◽  
Vol 44 (1) ◽  
pp. 72-76 ◽  
Author(s):  
A Russo ◽  
R Fraser ◽  
K Adachi ◽  
M Horowitz ◽  
G Boeckxstaens

BackgroundNon-cholinergic non-adrenergic neural mechanisms involving nerves containing NO have been shown to modulate smooth muscle in the gastrointestinal tract, and it has been suggested that release from tonic NO inhibition may be important in the regulation of cyclical fasting small intestinal motility.AimsTo evaluate the role of NO mechanisms in the regulation of fasting small intestinal motor activity in humans using a specific NO synthase inhibitor,NG-monomethyl-l-arginine ( l-NMMA).MethodsIn seven healthy male volunteers, duodenal and jejunal pressures were measured for four hours with a nine lumen manometric catheter. Volunteers attended on four separate days on which they received an intravenous infusion of either saline or l-NMMA (0.5, 2, or 4 mg/kg/h) in random order. Intravenous infusions began 10 minutes after completion of phase III of the migrating motor complex (MMC).ResultsThe first episode of phase III activity occurred earlier after infusion of 2 and 4 mg/kg/h l-NMMA than after infusion of 0.5 mg/kg/hl-NMMA or saline (mean (95% confidence interval) 52 (36–68) and 57 (18–97) v 116 (69–193) and 145 (64–226) minutes respectively) with a resultant MMC cycle length of 82 (59–105) and 86 (46–126) v 132 (49–198) and 169 (98–240) minutes respectively. The total number of phase III activities during the four hour recording was increased (p<0.05) by l-NMMA at a dose of 4 mg/kg/h (2 (1–3)) but not at 2 mg/kg/h (1.5 (1–2)) or 0.5 mg/kg/h (1.3 (1–2)) compared with saline (1.3 (0.6–2)). l-NMMA had no effect on the duration, velocity, number of contractions per minute, length of migration, or site of origin of phase III of the MMC. The duration of phase I activity was shorter (p<0.05) with 4 mg/kg/hl-NMMA than with saline (12 (1–23)v 31 (19–44) minutes).ConclusionsThese observations suggest that NO mechanisms play a role in the regulation of fasting small intestinal motor activity in humans.


1995 ◽  
Vol 268 (2) ◽  
pp. G207-G214 ◽  
Author(s):  
A. Rodriguez-Membrilla ◽  
V. Martinez ◽  
M. Jimenez ◽  
E. Gonalons ◽  
P. Vergara

The main objective was to study the role of nitric oxide (NO) in the conversion of migrating myoelectric complexes (MMC) to the irregular electrical activity characteristic of the postprandial state. Both rats and chickens were implanted with electrodes for electromyography in the small intestine. Intravenous infusion of NG-nitro-L-arginine (L-NNA), a NO synthase inhibitor, induced an organized MMC-like pattern in fed rats. Infusion of sodium nitroprusside, a NO donor, disrupted the MMC, inducing a postprandial-like motor pattern in fasting rats. Similarly, in chickens L-NNA mimicked the fasting pattern, consisting of a shortening of phase II, enlargement of phase III, orad displacement of the origin of the MMC, and an increase in the speed of phase III propagation. An inhibition of NO synthesis seems to be involved in the induction of the fasting motor pattern, whereas an increase of NO mediates the occurrence of the fed pattern. It is suggested that NO might be the final mediator in the control of small intestine motor patterns.


1987 ◽  
Vol 253 (3) ◽  
pp. G259-G267 ◽  
Author(s):  
H. J. Ehrlein ◽  
M. Schemann ◽  
M. L. Siegle

In the canine small intestine several simple (S) and complex (C) patterns of propulsive and nonpropulsive activities were found. The nonpropulsive activity consisted of 1) stationary individual contractions (S) and 2) stationary clusters of contractions (C). Patterns leading to aboral propulsion of luminal contents were 1) propagating contractions (S), 2) propagating power contractions (S), 3) phase III of the migrating motor complex (C), and 4) migrating clusters of contractions (C). The propagation velocities of the propulsive motor patterns differed markedly; they increased in the following order: phase III, migrating clustered contractions, propagating power contractions, propagating contractions. A retrograde transport of luminal contents was produced by two different activities: 1) retrograde propagating contractions (S) and 2) retrograde power contractions (S). They were accompanied with enterogastric reflux.


Sign in / Sign up

Export Citation Format

Share Document