Nickel-Catalyzed Electronically-Reversed Enantioselective Hydrocarbofunctionalizations of Acrylamides

Synlett ◽  
2021 ◽  
Author(s):  
Lou Shi ◽  
Wei Shu

Asymmetric hydrocarbofunctionalizations of alkenes has emerged as an efficient synthetic strategy for accessing optically active molecules via carbon-carbon bond-forming process from readily available alkenes and carbo-electrophiles. Herein, we present a summary of the efforts from our group to control the regio- and enantioselectivity of hydrocarbofunctionalizations of electron-deficient alkenes with a nickel catalyst and chiral bisoxazolidine ligand. The reaction undergoes electron-reversed hydrocarbofunctionalizations acrylamides with excellent enantioselectivity. This operationally simple protocol enables the asymmetric hydroalkylation, hydrobenzylation and hydropropargylation of acrylamides. This reaction is useful for preparing a wide range of α-branched chiral amides with broad functional group tolerance.

2012 ◽  
Vol 2012 ◽  
pp. 1-4
Author(s):  
Payal Malik ◽  
Debashis Chakraborty

An efficient La2O3-catalyzed new route for the carbon-carbon bond formation in particular, symmetrical and unsymmetrical biphenyls has been developed, which proceeds through carbon-carbon coupling reaction of aryl iodides with boronic acids. The reaction provided the desired products in moderate-to-good yields with a wide range of functional group tolerance.


Author(s):  
Jie Jack Li ◽  
Chris Limberakis ◽  
Derek A. Pflum

Searching for reaction in organic synthesis has been made much easier in the current age of computer databases. However, the dilemma now is which procedure one selects among the ocean of choices. Especially for novices in the laboratory, it becomes a daunting task to decide what reaction conditions to experiment with first in order to have the best chance of success. This collection intends to serve as an "older and wiser lab-mate" one could have by compiling many of the most commonly used experimental procedures in organic synthesis. With chapters that cover such topics as functional group manipulations, oxidation, reduction, and carbon-carbon bond formation, Modern Organic Synthesis in the Laboratory will be useful for both graduate students and professors in organic chemistry and medicinal chemists in the pharmaceutical and agrochemical industries.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 249
Author(s):  
Raquel G. Soengas ◽  
Humberto Rodríguez-Solla

The 1,3-butadiene motif is widely found in many natural products and drug candidates with relevant biological activities. Moreover, dienes are important targets for synthetic chemists, due to their ability to give access to a wide range of functional group transformations, including a broad range of C-C bond-forming processes. Therefore, the stereoselective preparation of dienes have attracted much attention over the past decades, and the search for new synthetic protocols continues unabated. The aim of this review is to give an overview of the diverse methodologies that have emerged in the last decade, with a focus on the synthetic processes that meet the requirements of efficiency and sustainability of modern organic chemistry.


Sign in / Sign up

Export Citation Format

Share Document