scholarly journals Modern Synthetic Methods for the Stereoselective Construction of 1,3-Dienes

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 249
Author(s):  
Raquel G. Soengas ◽  
Humberto Rodríguez-Solla

The 1,3-butadiene motif is widely found in many natural products and drug candidates with relevant biological activities. Moreover, dienes are important targets for synthetic chemists, due to their ability to give access to a wide range of functional group transformations, including a broad range of C-C bond-forming processes. Therefore, the stereoselective preparation of dienes have attracted much attention over the past decades, and the search for new synthetic protocols continues unabated. The aim of this review is to give an overview of the diverse methodologies that have emerged in the last decade, with a focus on the synthetic processes that meet the requirements of efficiency and sustainability of modern organic chemistry.

Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 228 ◽  
Author(s):  
Vera L. M. Silva ◽  
Artur M. S. Silva

Palladium-catalysed reactions have had a large impact on synthetic organic chemistry and have found many applications in target-oriented synthesis. Their widespread use in organic synthesis is due to the mild conditions associated with the reactions together with their tolerance of a wide range of functional groups. Moreover, these types of reactions allow the rapid construction of complex molecules through multiple bond-forming reactions in a single step, the so-called tandem processes. Pd-catalysed reactions have been applied to the synthesis of a large number of natural products and bioactive compounds, some of them of complex molecular structures. This review article aims to present an overview of the most important Pd-catalysed reactions employed in the synthesis and transformations of quinolin-2(1H)-ones and quinolin-4(1H)-ones. These compounds are widely recognized by their diverse bioactivity, being privileged structures in medicinal chemistry and useful structural moieties for the development of new drug candidates. Furthermore, they hold significant interest due to their host–guest chemistry; applications in chemical, biochemical and environmental analyses and use in the development of new synthetic methods. In some cases, the quinolone formation step cannot be ascribed to a claimed Pd-catalysed reaction but this reaction is crucial to get the appropriate substrate for cyclization into the quinolone. Herein we present and discuss different economical, efficient and selective synthetic strategies to access quinolone-type compounds.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1178
Author(s):  
Guillermo Otárola ◽  
Juan J. Vaquero ◽  
Estíbaliz Merino ◽  
Manuel A. Fernández-Rodríguez

Four carbon ring systems are frequently present in natural products with remarkable biological activities such as terpenoids, alkaloids, and steroids. The development of new strategies for the assembly of these structures in a rapid and efficient manner has attracted the interest of synthetic chemists for a long time. The current research is focused mainly on the development of synthetic methods that can be performed under mild reaction conditions with a high tolerance to functional groups. In recent years, gold complexes have turned into excellent candidates for this aim, owing to their high reactivity, and are thus capable of promoting a wide range of transformations under mild conditions. Their remarkable efficiency has been thoroughly demonstrated in the synthesis of complex organic molecules from simple starting materials. This review summarizes the main synthetic strategies described for gold-catalyzed four-carbon ring formation, as well as their application in the synthesis of natural products.


2019 ◽  
Vol 16 (1) ◽  
pp. 112-129 ◽  
Author(s):  
Aurelio Ortiz ◽  
Miriam Castro ◽  
Estibaliz Sansinenea

Background:3,4-dihydroisocoumarins are an important small group belonging to the class of naturally occurring lactones isolated from different bacterial strains, molds, lichens, and plants. The structures of these natural compounds show various types of substitution in their basic skeleton and this variability influences deeply their biological activities. These lactones are structural subunits of several natural products and serve as useful intermediates in the synthesis of different heterocyclic molecules, which exhibit a wide range of biological activities, such as anti-inflammatory, antiplasmodial, antifungal, antimicrobial, antiangiogenic and antitumoral activities, among others. Their syntheses have attracted attention of many researchers reporting many synthetic strategies to achieve 3,4-dihydroisocoumarins and other related structures. </P><P> Objective: In this context, the isolation of these natural compounds from different sources, their syntheses and biological activities are reviewed, adding the most recent advances and related developments.Conclusion:This review aims to encourage further work on the isolation and synthesis of this class of natural products. It would be beneficial for synthetic as well as the medicinal chemists to design selective, optimized dihydroisocoumarin derivatives as potential drug candidates, since dihydroisocoumarin scaffolds have significant utility in the development of therapeutically relevant and biologically active compounds.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5922
Author(s):  
Constanze Paulus ◽  
Josef Zapp ◽  
Andriy Luzhetskyy

Peptide natural products displaying a wide range of biological activities have become important drug candidates over the years. Microorganisms have been a powerful source of such bioactive peptides, and Streptomyces have yielded many novel natural products thus far. In an effort to uncover such new, meaningful compounds, the metabolome of Streptomyces acidiscabies was analyzed thoroughly. Three new compounds, scabimycins A–C (1–3), were discovered, and their chemical structures were elucidated by NMR spectroscopy. The relative and absolute configurations were determined using ROESY NMR experiments and advanced Marfey’s method.


Author(s):  
Mohammad Asif ◽  
Mohd. Imran

: Oxazine analog is a vital class of heterocyclic compounds and has attracted synthetic interest owing to their wide range of biological activities. Oxazine analogs are valuable in medicinal organic chemistry and exhibited different varieties of biological activities such as antimicrobial, anticancer, antimalarial, antitubercular, sedative, anticonvulsant, analgesic, anti-inflammatory, antipyretic, etc. Oxazine can be derived from benzene by appropriate substitution of carbon atoms of the ring by nitrogen and oxygen atoms. Nowadays, the development of drug resistance is a key problem, and to defeat this problem, it is crucial to synthesize novel compounds. So novel oxazine analogs may play a crucial role to overcome these problems. Oxazine analogs are prepared by reaction of chalcone derivatives with thiourea in the presence of alcohol and sodium hydroxide. The present aims of this review to give an outline of some different synthetic methods and different types of biological activities of oxazine analogs. We hope that this review will be motivating for researchers concerned with oxazine analogs.


2019 ◽  
Vol 16 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Namy George ◽  
Asha Asokan Manakkadan ◽  
Ajish Ariyath ◽  
Surya Maniyamma ◽  
Vishnu Vijayakumar ◽  
...  

Dihydropyrimidinones are extremely advantageous small sized molecules owning adaptable pharmaceutical properties. With a molecular formula C4H6N2O, they hold a wide range of biological activities. It is a heterocyclic moiety having two N-atoms at positions 1 and 3. They are derivatives of pyrimidine containing an additional ketone group. They have inspired development of a wide range of synthetic methods for preparation and chemical transformations. Taking into consideration their structural similarity and involvement with DNA and RNA, they have become very imperative in the world of synthetic organic chemistry. Aryl substituted moieties and their derivatives are significant class of substances in medicinal and organic chemistry. Many alkaloids from natural marine sources comprising dihydropyrimidinones core have been isolated which possess fascinating biological properties. Intensive explorations have been carried out on these compounds because they possess close similitude to clinically used nifedipine, nicardipine etc. which are also Biginelli product analogues. Due to the interesting pharmacological properties associated with the privileged DHPM structures, the Biginelli reaction and related procedures have received increasing attention in recent years.


2018 ◽  
Vol 25 (5) ◽  
pp. 636-658 ◽  
Author(s):  
Jan Pokorny ◽  
Lucie Borkova ◽  
Milan Urban

Triterpenoids are natural compounds with a large variety of biological activities such as anticancer, antiviral, antibacterial, antifungal, antiparazitic, antiinflammatory and others. Despite their low toxicity and simple availability from the natural resources, their clinical use is still severely limited by their higher IC50 and worse pharmacological properties than in the currently used therapeutics. This fact encouraged a number of researchers to develop new terpenic derivatives more suitable for the potential clinical use. This review summarizes a new approach to improve both, the activity and ADME-Tox properties by connecting active terpenes to another modifying molecules using click reactions. Within the past few years, this synthetic approach was well explored yielding a lot of great improvements of the parent compounds along with some less successful attempts. A large quantity of the new compounds presented here are superior in both activity and ADME-Tox properties to their parents. This review should serve the researchers who need to promote their hit triterpenic structures towards their clinical use and it is intended as a guide for the chemical synthesis of better drug candidates.


2019 ◽  
Vol 14 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Hidayat Hussain ◽  
Ivan R. Green ◽  
Muhammad Saleem ◽  
Khanzadi F. Khattak ◽  
Muhammad Irshad ◽  
...  

Background: Cucurbitacins belong to a group of tetracyclic triterpenoids that display a wide range of biological effects. In the past, numerous cucurbitacins have been isolated from natural sources and many active compounds have been synthesized using the privileged scaffold in order to enhance its cytotoxic effects. Objective: his review covers patents on the therapeutic effects of natural cucurbitacins and their synthetic analogs published during the past decade. By far, the majority of patents published are related to cancer and Structure-Activity Relationships (SAR) of these compounds are included to lend gravitas to this important class of natural products. Methods: The date about the published patents was downloaded via online open access patent databases. Results: Cucurbitacins display significant cytotoxic properties, in particular cucurbitacins B and D which possess very potent effects towards a number of cancer cells. Numerous cucurbitacins isolated from natural sources have been derivatized through chemical modification at the C(2)-OH and C(25)- OH groups. Most importantly, an acyl ester of the C(25)-OH and, iso-propyl, n-propyl and ethyl ether groups of the C(2)-OH demonstrated the most increased cytotoxic activity. Conclusion: The significant cytotoxic effects of natural and semi-synthetic cucurbitacins make them attractive as new drug candidates. Moreover, cucurbitacins have the capability to form conjugates with other anticancer drugs which will synergistically enhance their anticancer effects. The authors believe that in order to get lead compounds, there should be a greater focus on the synthesis of homodimers, heterodimers, and halo derivatives of cucurbitacins. In the opinion of the authors the analysis of the published patents on the cucurbitacins indicates that these compounds can be developed into a regimen to treat a wide spectrum of cancers.


Synlett ◽  
2021 ◽  
Author(s):  
Lou Shi ◽  
Wei Shu

Asymmetric hydrocarbofunctionalizations of alkenes has emerged as an efficient synthetic strategy for accessing optically active molecules via carbon-carbon bond-forming process from readily available alkenes and carbo-electrophiles. Herein, we present a summary of the efforts from our group to control the regio- and enantioselectivity of hydrocarbofunctionalizations of electron-deficient alkenes with a nickel catalyst and chiral bisoxazolidine ligand. The reaction undergoes electron-reversed hydrocarbofunctionalizations acrylamides with excellent enantioselectivity. This operationally simple protocol enables the asymmetric hydroalkylation, hydrobenzylation and hydropropargylation of acrylamides. This reaction is useful for preparing a wide range of α-branched chiral amides with broad functional group tolerance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunyun Ning ◽  
Shuaishuai Wang ◽  
Muzi Li ◽  
Jie Han ◽  
Chengjian Zhu ◽  
...  

AbstractDevelopment of catalytic amide bond-forming methods is important because they could potentially address the existing limitations of classical methods using superstoichiometric activating reagents. In this paper, we disclose an Umpolung amidation reaction of carboxylic acids with nitroarenes and nitroalkanes enabled by the triplet synergistic catalysis of FeI2, P(V)/P(III) and photoredox catalysis, which avoids the production of byproducts from stoichiometric coupling reagents. A wide range of carboxylic acids, including aliphatic, aromatic and alkenyl acids participate smoothly in such reactions, generating structurally diverse amides in good yields (86 examples, up to 97% yield). This Umpolung amidation strategy opens a method to address challenging regioselectivity issues between nucleophilic functional groups, and complements the functional group compatibility of the classical amidation protocols. The synthetic robustness of the reaction is demonstrated by late-stage modification of complex molecules and gram-scale applications.


Sign in / Sign up

Export Citation Format

Share Document