Transition-metal catalyzed stereo- and regioselective hydrosilylation of unsymmetrical alkynes

Synthesis ◽  
2021 ◽  
Author(s):  
Peng He ◽  
Meng-Yang Hu ◽  
Xin-Yu Zhang ◽  
Shou-Fei Zhu

The alkyne hydrosilylation is one of the most efficient methods for the synthesis of alkenylsilicons and has been a hot topic of research for decades. This short review summarizes the progress of transition-metal-catalyzed stereo- and regioselective hydrosilylation of unsymmetrical alkynes. Topics are discussed based on different types of alkynes and the selectivities.

Synthesis ◽  
2021 ◽  
Author(s):  
Xinjun Luan ◽  
Jingxun Yu

AbstractTransition-metal-catalyzed C–N bond formation is one of the most important pathways to synthesize N-heterocycles. Hydroxylamines can be transformed into a nucleophilic reagent to react with a carbon cation or coordinate with a transition metal; it can also become an electrophilic nitrogen source to react with arenes, alkenes, and alkynes. In this short review, the progress made on transition-metal-catalyzed cycloadditions with hydroxylamines as a nitrogen source is summarized.1 Introduction2 Cycloaddition To Form Aziridine Derivatives2.1 Intramolecular Cycloaddition To Form Aziridine Derivatives2.2 Intermolecular Cycloaddition To Form Aziridine Derivatives3 Cycloaddition To Form Indole Derivatives4 Cycloaddition To Form Other N-Heterocycles4.1 Aza-Heck-Type Amination Reactions4.2 Nitrene Insertion Amination Reactions4.3 Intramolecular Nucleophilic and Electrophilic Amination Reactions5 Conclusion and Outlook


Synthesis ◽  
2019 ◽  
Vol 51 (10) ◽  
pp. 2100-2106 ◽  
Author(s):  
Jie Li ◽  
Paul Knochel

Transition-metal-catalyzed cross-couplings have been recognized as a powerful tool for sustainable syntheses. Despite the fact that remarkable progress was achieved by palladium and nickel catalysis, the high price and toxicity still remained a drawback. Recently, naturally more abundant and less toxic low-valent chromium salts, such as Cr(II) and Cr(III) chlorides, displayed notable unique catalytic reactivity. Thus, recent progress in the field of chromium-catalyzed cross-couplings and related reactions are highlighted in the present short review until December­ 2018.1 Introduction and Early Chromium-Mediated Reactions2 Chromium-Catalyzed Cross-Couplings and Related Reactions3 Conclusion


2017 ◽  
Vol 285 ◽  
pp. 57-64 ◽  
Author(s):  
Xiaohong Zhang ◽  
Torrie E. Sewell ◽  
Brittany Glatz ◽  
Sapna Sarupria ◽  
Rachel B. Getman

2011 ◽  
Vol 83 (3) ◽  
pp. 495-506 ◽  
Author(s):  
Moisés Gulías ◽  
Fernando López ◽  
José L. Mascareñas

We present a compilation of methodologies developed in our laboratories to assemble polycyclic structures containing small- and medium-sized cycles, relying on the use of transition-metal-catalyzed (TMC) cycloadditions. First, we discuss the use of alkylidenecyclopropanes (ACPs) as 3C-atom partners, in particular in their Pd-catalyzed (3 + 2) cycloadditions with alkynes, alkenes, and allenes, reactions that lead to cyclopentane-containing polycyclic products in excellent yields. Then, we present the expansion of this chemistry to a (4 + 3) annulation with conjugated dienes, and to inter- and intramolecular (3 + 2 + 2) cycloadditions using external alkenes as additional 2C-π-systems. These reactions allow the preparation of different types of polycyclic structures containing cycloheptene rings, the topology of the products depending on the use of Pd or Ni catalysts. Finally, we include our more recent discoveries on the development of (4 + 3) and (4 + 2) intramolecular cyclo-additions of allenes and dienes, promoted by Pt and Au catalysts, and discuss mechanistic insights supported by experimental and density functional theory (DFT) calculations. An enantioselective version of the (4 + 2) cycloaddition with phosphoramidite Au(I) catalysts is also presented.


Synthesis ◽  
2021 ◽  
Author(s):  
Jie Jia ◽  
Fangdong Hu ◽  
Ying Xia

Transition-metal-catalyzed nucleophilic dearomatization of electron-deficient heteroarenes, such as pyridines, quinolines, isoquinolines and nitroindoles, has become a powerful method for the access of unsaturated heterocycles in recent decades. This short review summarizes nucleophilic dearomatization of electron-deficient heteroarenes with carbon- and heteroatom-based nucleophiles via transition-metal catalysis. A great number of functionalized heterocycles were obtained in this transformation. Importantly, many of these reactions were carried out in an enantioselective manner by means of asymmetric catalysis, providing a unique method for the construction of enantioenriched heterocycles. 1 Introduction 2 Transition-metal-catalyzed nucleophilic dearomatization of heteroarenes via alkynylation 3 Transition-metal-catalyzed nucleophilic dearomatization of heteroarenes via arylation 4 Transition-metal-catalyzed nucleophilic dearomatization of heteroarenes with other nucleophiles 5 Transition-metal-catalyzed nucleophilic dearomatization with nucleophiles formed in situ 6 Conclusion and outlook


Synthesis ◽  
2019 ◽  
Vol 52 (02) ◽  
pp. 197-207 ◽  
Author(s):  
Xuan Xiao ◽  
Zi-Tong Zheng ◽  
Ting Li ◽  
Jing-Lin Zheng ◽  
Ting Tao ◽  
...  

The difluoromethylthio group (HCF2S), which has been identified as a valuable functionality in drug and agrochemical discovery, has received increased attention recently. Two strategies, difluoromethylation and direct difluoromethylthiolation, have been well established for HCF2S incorporation. The former strategy suffers from the need to prepare sulfur-containing substrates. In contrast, direct difluoromethylthiolation is straightforward and step-economic. This short review covers the recent advances in direct difluoromethylthiolation, including electrophilic, radical, and transition-metal-catalyzed or -promoted reactions­.1 Introduction2 Electrophilic Difluoromethylthiolation3 Radical Difluoromethylthiolation4 Transition-Metal-Catalyzed or -Promoted Difluoromethylthiolation5 Conclusions and Perspectives


Synthesis ◽  
2020 ◽  
Vol 52 (06) ◽  
pp. 807-818 ◽  
Author(s):  
So Won Youn

This short review describes the recent progress made on transition-metal-catalyzed annulative couplings for the synthesis of 3-methyleneisoindolin-1-ones, which are useful intermediates for the synthesis of numerous alkaloids and can be often found in a wide range of natural products and pharmaceuticals. In particular, new one-pot multiple C–C/C–N bond-forming processes for the construction of the 5-methylenepyrrol-2-one nucleus of such compounds are summarized.1 Introduction2 Intramolecular Cyclization Reactions: C3–N or C3–C3a and C–C Bond Formation3 Intermolecular Annulative Coupling Reactions3.1 C3–C3a and C3–N Bond Formation3.2 C1–C7a and C3–N Bond Formation3.3 C1–C7a and C1–N Bond Formation3.4 C1–C7a, C1–N and C3–N Bond Formation3.5 C3–C3a, C1–C7a, C1–N and C3–N Bond Formation: A Pd-Catalyzed One-Pot Sonogashira Coupling–Carbonylation–Amination–Cyclization Cascade4 Conclusion


Synthesis ◽  
2017 ◽  
Vol 49 (21) ◽  
pp. 4808-4826 ◽  
Author(s):  
Tatiana Besset ◽  
Qun Zhao ◽  
Thomas Poisson ◽  
Xavier Pannecoucke

In recent years, the C–H bond activation field has known very fast expansion offering valuable synthetic tools. Consequently, the quest for new approaches to afford atom- and step-economical processes has driven the scientific community to imagine original strategies. In this context, the direct functionalization of substrates by a transition-metal-catalyzed C–H bond activation using a transient directing group has emerged as a promising approach. This short review focuses on the major progress made in this field to provide to the reader an overview of the recent advances.1 Introduction2 From a Historical Point of View3 Functionalization of Carbonyl Derivatives4 Functionalization of Amines Derivatives5 Summary and Outlook


Synthesis ◽  
2021 ◽  
Author(s):  
Wei-Wei Liao ◽  
Shu-Qiang Cui

AbstractTransition-metal-catalyzed C–H bond addition to nitriles has emerged as a powerful synthetic approach for the construction of C–C bonds in organic synthesis. Due to the merits of atom- and step-economy, as well the easy availability of the starting materials, these transformations not only deliver acyclic aryl ketone products with nitriles­ as C-building blocks, but can also be utilized for the highly efficient­ assembly of azaheterocyclic skeletons using nitriles as C–N building blocks. This short review summarizes recent progress on transition-metal-catalyzed C–C bond-forming reactions based on C(sp2)–H and C(sp3)–H additions to nitriles.1 Introduction2 Palladium-Catalyzed C–H Addition to Nitriles2.1 Palladium-Catalyzed C–H Addition to Nitriles for the Preparation of Ketone (Imine) Products2.2 Palladium-Catalyzed C–H Addition to Nitriles for the Preparation of Azaheterocycles2.3 Palladium-Catalyzed C–H Addition to Nitriles/1,2-Rearangement3 Other Transition-Metal-Catalyzed C–H Additions to Nitriles4 Summary and Outlook


Synthesis ◽  
2021 ◽  
Author(s):  
Mingliang Li ◽  
Jun WANG

Transition metal-catalyzed direct asymmetric C−H functionalization has become a powerful strategy to synthesize complex chiral molecules. Recently, catalytic enantioselective C−H arylation has attracted great interest from organic chemists to construct aryl-substituted chiral compounds. In this short review, we intend to highlight the recent advancements in asymmetric C−H arylation from 2019 to now, including enantioselective C(sp2)−H arylation to construct axial or planar chiral compounds, and enantioselective C(sp3)−H arylation to introduce central chirality via desymmetrization of methyl group or direct methylene C–H activation. These processes proceed with palladium, rhodium, iridium, nickel or copper catalyst, and utilize aryl halides, boron or diazo derivatives as arylation reagents.


Sign in / Sign up

Export Citation Format

Share Document